Biomass Tillage Data
An agricultural experiment in which different tillage methods were implemented. The effects of tillage on plant (maize) biomass were subsequently determined by modeling biomass accumulation for each tillage treatment using a 3 parameter Weibull function.
A datset where the total biomass is modeled conditional on a three value factor, and hence vector parameters are used.
data("biomassTill", package="robustbase")
A data frame with 58 observations on the following 3 variables.
Tillage
Tillage treatments, a factor
with levels
CA-
:a no-tillage system with plant residues removed
CA+
:a no-tillage system with plant residues retained
CT
:a conventionally tilled system with residues incorporated
DVS
the development stage of the maize crop. A DVS of
1
represents maize anthesis (flowering), and a DVS of 2
represents physiological maturity. For the data, numeric vector with
5 different values between 0.5 and 2.
Biomass
accumulated biomass of maize plants from each tillage treatment.
Biom.2
the same as Biomass
, but with three
values replaced by “gross errors”.
From Strahinja Stepanovic and John Laborde, Department of Agronomy & Horticulture, University of Nebraska-Lincoln, USA
data(biomassTill) str(biomassTill) require(lattice) ## With long tailed errors xyplot(Biomass ~ DVS | Tillage, data = biomassTill, type=c("p","smooth")) ## With additional 2 outliers: xyplot(Biom.2 ~ DVS | Tillage, data = biomassTill, type=c("p","smooth")) ### Fit nonlinear Regression models: ----------------------------------- ## simple starting values, needed: m00st <- list(Wm = rep(300, 3), a = rep( 1.5, 3), b = rep( 2.2, 3)) robm <- nlrob(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])), data = biomassTill, start = m00st, maxit = 200) ## ----------- summary(robm) ## ... 103 IRWLS iterations plot(sort(robm$rweights), log = "y", main = "ordered robustness weights (log scale)") mtext(getCall(robm)) ## the classical (only works for the mild outliers): cl.m <- nls(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])), data = biomassTill, start = m00st) ## now for the extra-outlier data: -- fails with singular gradient !! try( rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])), data = biomassTill, start = m00st) ) ## use better starting values: m1st <- setNames(as.list(as.data.frame(matrix( coef(robm), 3))), c("Wm", "a","b")) try(# just breaks a bit later! rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])), data = biomassTill, start = m1st, maxit= 200, trace=TRUE) ) ## Comparison {more to come} % once we have "MM" working... rbind(start = unlist(m00st), class = coef(cl.m), rob = coef(robm))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.