Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

huberM

Safe (generalized) Huber M-Estimator of Location


Description

(Generalized) Huber M-estimator of location with MAD scale, being sensible also when the scale is zero where huber() returns an error.

Usage

huberM(x, k = 1.5, weights = NULL, tol = 1e-06,
       mu = if(is.null(weights)) median(x) else wgt.himedian(x, weights),
       s =  if(is.null(weights)) mad(x, center=mu)
	    else wgt.himedian(abs(x - mu), weights),
       se = FALSE,
       warn0scale = getOption("verbose"))

Arguments

x

numeric vector.

k

positive factor; the algorithm winsorizes at k standard deviations.

weights

numeric vector of non-negative weights of same length as x, or NULL.

tol

convergence tolerance.

mu

initial location estimator.

s

scale estimator held constant through the iterations.

se

logical indicating if the standard error should be computed and returned (as SE component). Currently only available when weights is NULL.

warn0scale

logical; if true, and s is 0 and length(x) > 1, this will be warned about.

Details

Note that currently, when non-NULL weights are specified, the default for initial location mu and scale s is wgt.himedian, where strictly speaking a weighted “non-hi” median should be used for consistency. Since s is not updated, the results slightly differ, see the examples below.

When se = TRUE, the standard error is computed using the τ correction factor but no finite sample correction.

Value

list of location and scale parameters, and number of iterations used.

mu

location estimate

s

the s argument, typically the mad.

it

the number of “Huber iterations” used.

Author(s)

Martin Maechler, building on the MASS code mentioned.

References

Huber, P. J. (1981) Robust Statistics. Wiley.

See Also

hubers (and huber) in package MASS; mad.

Examples

huberM(c(1:9, 1000))
mad   (c(1:9, 1000))
mad   (rep(9, 100))
huberM(rep(9, 100))

## When you have "binned" aka replicated observations:
set.seed(7)
x <- c(round(rnorm(1000),1), round(rnorm(50, m=10, sd = 10)))
t.x <- table(x) # -> unique values and multiplicities
x.uniq <- as.numeric(names(t.x)) ## == sort(unique(x))
x.mult <- unname(t.x)
str(Hx  <- huberM(x.uniq, weights = x.mult), digits = 7)
str(Hx. <- huberM(x, s = Hx$s, se=TRUE), digits = 7) ## should be ~= Hx
stopifnot(all.equal(Hx[-4], Hx.[-4]))
str(Hx2 <- huberM(x, se=TRUE), digits = 7)## somewhat different, since 's' differs

## Confirm correctness of std.error :

system.time(
SS <- replicate(10000, vapply(huberM(rnorm(400), se=TRUE), as.double, 1.))
) # ~ 12.2 seconds
rbind(mean(SS["SE",]), sd(SS["mu",]))# both ~ 0.0508
stopifnot(all.equal(mean(SS["SE",]),
                    sd ( SS["mu",]), tolerance= 0.002))

robustbase

Basic Robust Statistics

v0.93-7
GPL (>= 2)
Authors
Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Peter Rousseeuw [ctb] (Qn and Sn), Christophe Croux [ctb] (Qn and Sn), Valentin Todorov [aut] (most robust Cov), Andreas Ruckstuhl [aut] (nlrob, anova, glmrob), Matias Salibian-Barrera [aut] (lmrob orig.), Tobias Verbeke [ctb, fnd] (mc, adjbox), Manuel Koller [aut] (mc, lmrob, psi-func.), Eduardo L. T. Conceicao [aut] (MM-, tau-, CM-, and MTL- nlrob), Maria Anna di Palma [ctb] (initial version of Comedian)
Initial release
2021-01-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.