Compute M-estimators of regression
This function performs RWLS iterations to find an
M-estimator of regression. When started from an S-estimated
beta.initial
, this results in an MM-estimator.
lmrob..M..fit(x, y, beta.initial, scale, control, obj, mf = obj$model, method = obj$control$method)
x |
design matrix (n x p) typically including a
column of |
y |
numeric response vector (of length n). |
beta.initial |
numeric vector (of length p) of initial estimate. Usually the result of an S-regression estimator. |
scale |
robust residual scale estimate. Usually an S-scale estimator. |
control |
list of control parameters, as returned
by |
obj |
an optional |
mf |
unused and deprecated. |
method |
optional; the |
This function is used by lmrob.fit
(and
anova(<lmrob>, type = "Deviance")
) and typically not to be used
on its own.
A list with the following elements:
coef |
the M-estimator (or MM-estim.) of regression |
control |
the |
scale |
The residual scale estimate |
seed |
The random number generator seed |
converged |
|
Matias Salibian-Barrera and Martin Maechler
Yohai, 1987
data(stackloss) X <- model.matrix(stack.loss ~ . , data = stackloss) y <- stack.loss ## Compute manual MM-estimate: ## 1) initial LTS: m0 <- ltsReg(X[,-1], y) ## 2) M-estimate started from LTS: m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale, method = "SM", control = lmrob.control(tuning.psi = 1.6, psi = 'bisquare')) ## no 'method' (nor 'obj'): m1. <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale, control = m1$control) stopifnot(all.equal(m1, m1., tol = 1e-15)) # identical {call *not* stored!} cbind(m0$coef, m1$coef) ## the scale is kept fixed: stopifnot(identical(unname(m0$scale), m1$scale)) ## robustness weights: are r.s <- with(m1, residuals/scale) # scaled residuals m1.wts <- Mpsi(r.s, cc = 1.6, psi="tukey") / r.s summarizeRobWeights(m1.wts) ##--> outliers 1,3,4,13,21 which(m0$lts.wt == 0) # 1,3,4,21 but not 13 ## Manually add M-step to SMD-estimate (=> equivalent to "SMDM"): m2 <- lmrob(stack.loss ~ ., data = stackloss, method = 'SMD') m3 <- lmrob..M..fit(obj = m2) ## Simple function that allows custom initial estimates ## (Deprecated; use init argument to lmrob() instead.) %% MM: why deprecated? lmrob.custom <- function(x, y, beta.initial, scale, terms) { ## initialize object obj <- list(control = lmrob.control("KS2011"), terms = terms) ## terms is needed for summary() ## M-step obj <- lmrob..M..fit(x, y, beta.initial, scale, obj = obj) ## D-step obj <- lmrob..D..fit(obj, x) ## Add some missing elements obj$cov <- TRUE ## enables calculation of cov matrix obj$p <- obj$qr$rank obj$degree.freedom <- length(y) - obj$p ## M-step obj <- lmrob..M..fit(x, y, obj=obj) obj$control$method <- ".MDM" obj } m4 <- lmrob.custom(X, y, m2$init$init.S$coef, m2$init$scale, m2$terms) stopifnot(all.equal(m4$coef, m3$coef)) ## Start from ltsReg: m5 <- ltsReg(stack.loss ~ ., data = stackloss) m6 <- lmrob.custom(m5$X, m5$Y, coef(m5), m5$scale, m5$terms)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.