Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

rpf.drm

Create a dichotomous response model


Description

For slope vector a, intercept c, pseudo-guessing parameter g, upper bound u, and latent ability vector theta, the response probability function is

P(pick=0|a,c,g,u,th) = 1-P(pick=1|a,c,g,u,th)

P(pick=1|a,c,g,u,th) = g+(u-g)/(1+exp(-(a th + c)))

Usage

rpf.drm(factors = 1, multidimensional = TRUE, poor = FALSE)

Arguments

factors

the number of factors

multidimensional

whether to use a multidimensional model. Defaults to TRUE.

poor

if TRUE, use the traditional parameterization of the 1d model instead of the slope-intercept parameterization

Details

The pseudo-guessing and upper bound parameter are specified in logit units (see logit).

For discussion on the choice of priors see Cai, Yang, and Hansen (2011, p. 246).

Value

an item model

References

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized Full-Information Item Bifactor Analysis. Psychological Methods, 16(3), 221-248.

See Also

Other response model: rpf.gpcmp(), rpf.grmp(), rpf.grm(), rpf.lmp(), rpf.mcm(), rpf.nrm()

Examples

spec <- rpf.drm()
rpf.prob(spec, rpf.rparam(spec), 0)

rpf

Response Probability Functions

v1.0.11
GPL (>= 3)
Authors
Joshua Pritikin [cre, aut], Jonathan Weeks [ctb], Li Cai [ctb], Carrie Houts [ctb], Phil Chalmers [ctb], Michael D. Hunter [ctb], Carl F. Falk [ctb]
Initial release
2021-10-19

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.