Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

PcaCov-class

Class "PcaCov" - Robust PCA based on a robust covariance matrix


Description

Robust PCA are obtained by replacing the classical covariance matrix by a robust covariance estimator. This can be one of the available in rrcov estimators, i.e. MCD, OGK, M, S or Stahel-Donoho estimator.

Objects from the Class

Objects can be created by calls of the form new("PcaCov", ...) but the usual way of creating PcaCov objects is a call to the function PcaCov which serves as a constructor.

Slots

quan:

Object of class "numeric" The quantile h used throughout the algorithm

call, center, loadings, eigenvalues, scores, k, sd, od, cutoff.sd, cutoff.od, flag, n.obs:

from the "Pca" class.

Extends

Class "PcaRobust", directly. Class "Pca", by class "PcaRobust", distance 2.

Methods

getQuan

signature(obj = "PcaCov"): ...

Author(s)

Valentin Todorov valentin.todorov@chello.at

References

Todorov V & Filzmoser P (2009), An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. URL http://www.jstatsoft.org/v32/i03/.

See Also

Examples

showClass("PcaCov")

rrcov

Scalable Robust Estimators with High Breakdown Point

v1.5-5
GPL (>= 2)
Authors
Valentin Todorov [aut, cre] (<https://orcid.org/0000-0003-4215-0245>)
Initial release
2020-07-31

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.