Archaic Greek Pottery data
The Archaic Greek Pottery data set contains data on fragments of Greek pottery which were classified into two groups according to their origin: Attic or Eritrean. Six chemical variables, metallic oxide constituents, were measured: Si, Al, Fe, Ca and Ti. The main data set consists of 13 Attic objects and 14 Eritrean ones. There is a separate data set with 13 observations which can be used as a test data set. It consists of 4 observations classified as "probably Attic" and the remaining 9 as "probably Eritrean".
data(pottery)
Two data frames with 27 an 13 observations on the following 7 variables.
SI
Si content
AL
Al content
FE
Fe content
MG
Mg content
CA
Ca content
TI
Ti content
origin
Origin - factor with two levels: Attic
and Eritrean
The Archaic Greek Pottery data set was first published by Stern and Descoeudres (1977) and later reproduced in Cooper and Weeks (1983) for illustration of linear discriminant analisys. The data set was used by Pires and Branco (2010) for illustration of their projection pursuit approach to linear discriminant analysis.
STERN, W. B. and DESCOEUDRES, J.-P. (1977) X-RAY FLUORESCENCE ANALYSIS OF ARCHAIC GREEK POTTERY Archaeometry, Blackwell Publishing Ltd, 19, 73–86.
Cooper, R.A. and Weekes, A.J.. 1983 Data, Models, and Statistical Analysis, (Lanham, MD: Rowman & Littlefield).
Pires, A. M. and A. Branco, J. (2010) Projection-pursuit approach to robust linear discriminant analysis Journal Multivariate Analysis, Academic Press, Inc., 101, 2464–2485.
data(pottery) x <- pottery[,c("MG", "CA")] grp <- pottery$origin ## ## Compute robust location and covariance matrix and ## plot the tolerance ellipses library(rrcov) (mcd <- CovMcd(x)) col <- c(3,4) gcol <- ifelse(grp == "Attic", col[1], col[2]) gpch <- ifelse(grp == "Attic", 16, 1) plot(mcd, which="tolEllipsePlot", class=TRUE, col=gcol, pch=gpch) ## ## Perform classical LDA and plot the data, 0.975 tolerance ellipses ## and LDA separation line ## x <- pottery[,c("MG", "CA")] grp <- pottery$origin lda <- LdaClassic(x, grp) lda e1 <- getEllipse(loc=lda@center[1,], cov=lda@cov) e2 <- getEllipse(loc=lda@center[2,], cov=lda@cov) plot(CA~MG, data=pottery, col=gcol, pch=gpch, xlim=c(min(MG,e1[,1], e2[,1]), max(MG,e1[,1], e2[,1])), ylim=c(min(CA,e1[,2], e2[,2]), max(CA,e1[,2], e2[,2]))) ab <- lda@ldf[1,] - lda@ldf[2,] cc <- lda@ldfconst[1] - lda@ldfconst[2] abline(a=-cc/ab[2], b=-ab[1]/ab[2], col=2, lwd=2) lines(e1, type="l", col=col[1]) lines(e2, type="l", col=col[2]) ## ## Perform robust (MCD) LDA and plot data, classical and ## robust separation line ## plot(CA~MG, data=pottery, col=gcol, pch=gpch) lda <- LdaClassic(x, grp) ab <- lda@ldf[1,] - lda@ldf[2,] cc <- lda@ldfconst[1] - lda@ldfconst[2] abline(a=-cc/ab[2], b=-ab[1]/ab[2], col=2, lwd=2) abline(a=-cc/ab[2], b=-ab[1]/ab[2], col=4, lwd=2) rlda <- Linda(x, grp, method="mcd") rlda ab <- rlda@ldf[1,] - rlda@ldf[2,] cc <- rlda@ldfconst[1] - rlda@ldfconst[2] abline(a=-cc/ab[2], b=-ab[1]/ab[2], col=2, lwd=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.