Wages and Hours
The data are from a national sample of 6000 households with a male head earning less than USD 15,000 annually in 1966. The data were clasified into 39 demographic groups for analysis. The study was undertaken in the context of proposals for a guaranteed annual wage (negative income tax). At issue was the response of labor supply (average hours) to increasing hourly wages. The study was undertaken to estimate this response from available data.
data(wages)
A data frame with 39 observations on the following 10 variables:
HRS
Average hours worked during the year
RATE
Average hourly wage (USD)
ERSP
Average yearly earnings of spouse (USD)
ERNO
Average yearly earnings of other family members (USD)
NEIN
Average yearly non-earned income
ASSET
Average family asset holdings (Bank account, etc.) (USD)
AGE
Average age of respondent
DEP
Average number of dependents
RACE
Percent of white respondents
SCHOOL
Average highest grade of school completed
DASL library 'http://lib.stat.cmu.edu/DASL/Datafiles/wagesdat.html'
D.H. Greenberg and M. Kosters, (1970). Income Guarantees and the Working Poor, The Rand Corporation.
data(wages) names(wages) x <- as.matrix(wages) ok <- is.finite(x %*% rep(1, ncol(x))) wages <- wages[ok, , drop = FALSE] wages.lm <- lm(HRS~AGE, data=wages) plot(HRS ~ AGE, data = wages) abline(wages.lm) class(wages.lm) names(wages.lm) summary(wages.lm) wages.mm <- lmrob(HRS~AGE, data=wages) plot(HRS ~ AGE, data = wages) abline(wages.mm) class(wages.mm) names(wages.mm) summary(wages.mm)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.