Tidy Resampling Object
The tidy
function from the broom package can be used on rset
and
rsplit
objects to generate tibbles with which rows are in the analysis and
assessment sets.
## S3 method for class 'rsplit' tidy(x, unique_ind = TRUE, ...) ## S3 method for class 'rset' tidy(x, ...) ## S3 method for class 'vfold_cv' tidy(x, ...) ## S3 method for class 'nested_cv' tidy(x, ...)
x |
A |
unique_ind |
Should unique row identifiers be returned? For example,
if |
... |
Not currently used. |
Note that for nested resampling, the rows of the inner resample,
named inner_Row
, are relative row indices and do not correspond to the
rows in the original data set.
A tibble with columns Row
and Data
. The latter has possible
values "Analysis" or "Assessment". For rset
inputs, identification columns
are also returned but their names and values depend on the type of
resampling. vfold_cv
contains a column "Fold" and, if repeats are used,
another called "Repeats". bootstraps
and mc_cv
use the column
"Resample".
library(ggplot2) theme_set(theme_bw()) set.seed(4121) cv <- tidy(vfold_cv(mtcars, v = 5)) ggplot(cv, aes(x = Fold, y = Row, fill = Data)) + geom_tile() + scale_fill_brewer() set.seed(4121) rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2)) ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) + geom_tile() + facet_wrap(~Repeat) + scale_fill_brewer() set.seed(4121) mccv <- tidy(mc_cv(mtcars, times = 5)) ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) + geom_tile() + scale_fill_brewer() set.seed(4121) bt <- tidy(bootstraps(mtcars, time = 5)) ggplot(bt, aes(x = Resample, y = Row, fill = Data)) + geom_tile() + scale_fill_brewer() dat <- data.frame(day = 1:30) # Resample by week instead of day ts_cv <- rolling_origin(dat, initial = 7, assess = 7, skip = 6, cumulative = FALSE) ts_cv <- tidy(ts_cv) ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) + geom_tile() + scale_fill_brewer()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.