Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

PublicSchools

US Expenditures for Public Schools


Description

Per capita expenditure on public schools and per capita income by state in 1979.

Usage

data(PublicSchools)

Format

A data frame containing 51 observations of 2 variables.

Expenditure

per capita expenditure on public schools,

Income

per capita income.

Source

Table 14.1 in Greene (1993)

References

Cribari-Neto F. (2004). “Asymptotic Inference Under Heteroskedasticity of Unknown Form.” Computational Statistics \& Data Analysis, 45, 215-233.

Greene W.H. (1993). Econometric Analysis, 2nd edition. Macmillan Publishing Company, New York.

US Department of Commerce (1979). Statistical Abstract of the United States. US Government Printing Office, Washington, DC.

Examples

## Willam H. Greene, Econometric Analysis, 2nd Ed.
## Chapter 14
## load data set, p. 385, Table 14.1
data(PublicSchools)

## omit NA in Wisconsin and scale income
ps <- na.omit(PublicSchools)
ps$Income <- ps$Income * 0.0001

## fit quadratic regression, p. 385, Table 14.2
fmq <- lm(Expenditure ~ Income + I(Income^2), data = ps)
summary(fmq)

## compare standard and HC0 standard errors
## p. 391, Table 14.3
library(sandwich)
coef(fmq)
sqrt(diag(vcovHC(fmq, type = "const")))
sqrt(diag(vcovHC(fmq, type = "HC0")))


if(require(lmtest)) {
## compare t ratio
coeftest(fmq, vcov = vcovHC(fmq, type = "HC0"))

## White test, p. 393, Example 14.5
wt <- lm(residuals(fmq)^2 ~ poly(Income, 4), data = ps)
wt.stat <- summary(wt)$r.squared * nrow(ps)
c(wt.stat, pchisq(wt.stat, df = 3, lower = FALSE))

## Bresch-Pagan test, p. 395, Example 14.7
bptest(fmq, studentize = FALSE)
bptest(fmq)

## Francisco Cribari-Neto, Asymptotic Inference, CSDA 45
## quasi z-tests, p. 229, Table 8
## with Alaska
coeftest(fmq, df = Inf)[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC0"))[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC3"))[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC4"))[3,4]
## without Alaska (observation 2)
fmq1 <- lm(Expenditure ~ Income + I(Income^2), data = ps[-2,])
coeftest(fmq1, df = Inf)[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC0"))[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC3"))[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC4"))[3,4]
}

## visualization, p. 230, Figure 1
plot(Expenditure ~ Income, data = ps,
  xlab = "per capita income",
  ylab = "per capita spending on public schools")
inc <- seq(0.5, 1.2, by = 0.001)
lines(inc, predict(fmq, data.frame(Income = inc)), col = 4)
fml <- lm(Expenditure ~ Income, data = ps)
abline(fml)
text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2)

sandwich

Robust Covariance Matrix Estimators

v3.0-0
GPL-2 | GPL-3
Authors
Achim Zeileis [aut, cre] (<https://orcid.org/0000-0003-0918-3766>), Thomas Lumley [aut], Nathaniel Graham [ctb], Susanne Koell [ctb]
Initial release
2020-10-01

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.