seminr fSquared Function
The fSquared
function calculates f^2 effect size for a given IV and DV
fSquared(seminr_model, iv, dv)
seminr_model |
A |
iv |
An independent variable in the model. |
dv |
A dependent variable in the model. |
A matrix of the estimated F Square metric for each construct.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
mobi_mm <- constructs( reflective("Image", multi_items("IMAG", 1:5)), reflective("Expectation", multi_items("CUEX", 1:3)), reflective("Quality", multi_items("PERQ", 1:7)), reflective("Value", multi_items("PERV", 1:2)), reflective("Satisfaction", multi_items("CUSA", 1:3)), reflective("Complaints", single_item("CUSCO")), reflective("Loyalty", multi_items("CUSL", 1:3)) ) mobi_sm <- relationships( paths(from = "Image", to = c("Expectation", "Satisfaction", "Loyalty")), paths(from = "Expectation", to = c("Quality", "Value", "Satisfaction")), paths(from = "Quality", to = c("Value", "Satisfaction")), paths(from = "Value", to = c("Satisfaction")), paths(from = "Satisfaction", to = c("Complaints", "Loyalty")), paths(from = "Complaints", to = "Loyalty") ) mobi_pls <- estimate_pls(data = mobi, measurement_model = mobi_mm, structural_model = mobi_sm) fSquared(mobi_pls, "Image", "Satisfaction")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.