Find all Primes Less Than n
Find all prime numbers aka ‘primes’ less than n.
primes(n, pSeq = NULL)
n |
a (typically positive integer) number. |
pSeq |
optionally a vector of primes (2,3,5,...) as if from a
|
As the function only uses max(n)
, n
can also be a
vector of numbers.
The famous prime number theorem states that π(n), the number of primes below n is asymptotically n / \log(n) in the sense that lim[n -> Inf] π(n) * log(n) / n ~ 1.
Equivalently, the inverse of pi(), the n-th prime number p_n is around n \log n; recent results (Pierre Dusart, 1999), prove that
log n + log log n - 1 < p_n / n < log n + log log n for n >= 6.
numeric vector of all prime numbers <= n.
Bill Venables (<= 2001); Martin Maechler gained another 40% speed, carefully working with logicals and integers.
(p1 <- primes(100)) system.time(p1k <- primes(1000)) # still lightning fast stopifnot(length(p1k) == 168) system.time(p.e7 <- primes(1e7)) # still only 0.3 sec (2015 (i7)) stopifnot(length(p.e7) == 664579) ## The famous pi(n) := number of primes <= n: pi.n <- approxfun(p.e7, seq_along(p.e7), method = "constant") pi.n(c(10, 100, 1000)) # 4 25 168 plot(pi.n, 2, 1e7, n = 1024, log="xy", axes = FALSE, xlab = "n", ylab = quote(pi(n)), main = quote("The prime number function " ~ pi(n))) eaxis(1); eaxis(2) ## Exploring p(n) := the n-th prime number ~=~ n * pnn(n), where ## pnn(n) := log n + log log n pnn <- function(n) { L <- log(n); L + log(L) } n <- 6:(N <- length(PR <- primes(1e5))) m.pn <- cbind(l.pn = ceiling(n*(pnn(n)-1)), pn = PR[n], u.pn = floor(n*pnn(n))) matplot(n, m.pn, type="l", ylab = quote(p[n]), main = quote(p[n] ~~ "with lower/upper bounds" ~ n*(log(n) + log(log(n)) -(1~"or"~0)))) ## (difference to the lower approximation) / n --> ~ 0.0426 (?) : plot(n, PR[n]/n - (pnn(n)-1), type = 'l', cex = 1/8, log="x", xaxt="n") eaxis(1); abline(h=0, col=adjustcolor(1, 0.5))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.