Nonparametric Estimation of Conditional Covariances of Item Pairs
This function estimates conditional covariances of itempairs
(Stout, Habing, Douglas & Kim, 1996; Zhang & Stout,
1999a). The function is used for the estimation of the DETECT index.
The ccov.np
function has the (default) option to smooth item response
functions (argument smooth
) in the computation of conditional covariances
(Douglas, Kim, Habing, & Gao, 1998).
ccov.np(data, score, bwscale=1.1, thetagrid=seq(-3, 3, len=200), progress=TRUE, scale_score=TRUE, adjust_thetagrid=TRUE, smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE)
data |
An N \times I data frame of dichotomous responses. Missing responses are allowed. |
score |
An ability estimate, e.g. the WLE |
bwscale |
Bandwidth factor for calculation of conditional covariance. The bandwidth
used in the estimation is |
thetagrid |
A vector which contains theta values where conditional covariances are evaluated. |
progress |
Display progress? |
scale_score |
Logical indicating whether |
adjust_thetagrid |
Logical indicating whether |
smooth |
Logical indicating whether smoothing should be applied for conditional covariance estimation |
use_sum_score |
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used. |
bias_corr |
Logical indicating whether bias correction (Zhang & Stout, 1999)
should be utilized if |
This function is used in conf.detect
and expl.detect
.
Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23(2), 129-151. doi: 10.3102/10769986023002129
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi: 10.1177/014662169602000403
Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. doi: 10.1007/BF02294532
## Not run: ############################################################################# # EXAMPLE 1: data.read | different settings for computing conditional covariance ############################################################################# data(data.read, package="sirt") dat <- data.read #* fit Rasch model mod <- sirt::rasch.mml2(dat) score <- sirt::wle.rasch(dat=dat, b=mod$item$b)$theta #* ccov with smoothing cmod1 <- sirt::ccov.np(data=dat, score=score, bwscale=1.1) #* ccov without smoothing cmod2 <- sirt::ccov.np(data=dat, score=score, smooth=FALSE) #- compare results 100*cbind( cmod1$ccov.table[1:6, "ccov"], cmod2$ccov.table[1:6, "ccov"]) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.