Clustering for Continuous Fuzzy Data
This function performs clustering for continuous fuzzy data for which membership functions are assumed to be Gaussian (Denoeux, 2013). The mixture is also assumed to be Gaussian and (conditionally cluster membership) independent.
fuzcluster(dat_m, dat_s, K=2, nstarts=7, seed=NULL, maxiter=100, parmconv=0.001, fac.oldxsi=0.75, progress=TRUE) ## S3 method for class 'fuzcluster' summary(object,...)
dat_m |
Centers for individual item specific membership functions |
dat_s |
Standard deviations for individual item specific membership functions |
K |
Number of latent classes |
nstarts |
Number of random starts. The default is 7 random starts. |
seed |
Simulation seed. If one value is provided, then only one start is performed. |
maxiter |
Maximum number of iterations |
parmconv |
Maximum absolute change in parameters |
fac.oldxsi |
Convergence acceleration factor which should take values between 0 and 1. The default is 0.75. |
progress |
An optional logical indicating whether iteration progress should be displayed. |
object |
Object of class |
... |
Further arguments to be passed |
A list with following entries
deviance |
Deviance |
iter |
Number of iterations |
pi_est |
Estimated class probabilities |
mu_est |
Cluster means |
sd_est |
Cluster standard deviations |
posterior |
Individual posterior distributions of cluster membership |
seed |
Simulation seed for cluster solution |
ic |
Information criteria |
Denoeux, T. (2013). Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering, 25, 119-130.
See fuzdiscr
for estimating discrete distributions for
fuzzy data.
See the fclust package for fuzzy clustering.
## Not run: ############################################################################# # EXAMPLE 1: 2 classes and 3 items ############################################################################# #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # simulate data (2 classes and 3 items) set.seed(876) library(mvtnorm) Ntot <- 1000 # number of subjects # define SDs for simulating uncertainty sd_uncertain <- c( .2, 1, 2 ) dat_m <- NULL # data frame containing mean of membership function dat_s <- NULL # data frame containing SD of membership function # *** Class 1 pi_class <- .6 Nclass <- Ntot * pi_class mu <- c(3,1,0) Sigma <- diag(3) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) # *** Class 2 pi_class <- .4 Nclass <- Ntot * pi_class mu <- c(0,-2,0.4) Sigma <- diag(c(0.5, 2, 2 ) ) # simulate data dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma ) dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass ) for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] } dat_m <- rbind( dat_m, dat_m1 ) dat_s <- rbind( dat_s, dat_s1 ) colnames(dat_s) <- colnames(dat_m) <- paste0("I", 1:3 ) #*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- # estimation #*** Model 1: Clustering with 8 random starts res1 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=8, maxiter=25) summary(res1) ## Number of iterations=22 (Seed=5090 ) ## --------------------------------------------------- ## Class probabilities (2 Classes) ## [1] 0.4083 0.5917 ## ## Means ## I1 I2 I3 ## [1,] 0.0595 -1.9070 0.4011 ## [2,] 3.0682 1.0233 0.0359 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7238 1.3712 1.2647 ## [2,] 0.9740 0.8500 0.7523 #*** Model 2: Clustering with one start with seed 4550 res2 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=1, seed=5090 ) summary(res2) #*** Model 3: Clustering for crisp data # (assuming no uncertainty, i.e. dat_s=0) res3 <- sirt::fuzcluster(K=2,dat_m, dat_s=0*dat_s, nstarts=30, maxiter=25) summary(res3) ## Class probabilities (2 Classes) ## [1] 0.3645 0.6355 ## ## Means ## I1 I2 I3 ## [1,] 0.0463 -1.9221 0.4481 ## [2,] 3.0527 1.0241 -0.0008 ## ## Standard deviations ## [,1] [,2] [,3] ## [1,] 0.7261 1.4541 1.4586 ## [2,] 0.9933 0.9592 0.9535 #*** Model 4: kmeans cluster analysis res4 <- stats::kmeans( dat_m, centers=2 ) ## K-means clustering with 2 clusters of sizes 607, 393 ## Cluster means: ## I1 I2 I3 ## 1 3.01550780 1.035848 -0.01662275 ## 2 0.03448309 -2.008209 0.48295067 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.