Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fuzcluster

Clustering for Continuous Fuzzy Data


Description

This function performs clustering for continuous fuzzy data for which membership functions are assumed to be Gaussian (Denoeux, 2013). The mixture is also assumed to be Gaussian and (conditionally cluster membership) independent.

Usage

fuzcluster(dat_m, dat_s, K=2, nstarts=7, seed=NULL, maxiter=100,
     parmconv=0.001, fac.oldxsi=0.75, progress=TRUE)

## S3 method for class 'fuzcluster'
summary(object,...)

Arguments

dat_m

Centers for individual item specific membership functions

dat_s

Standard deviations for individual item specific membership functions

K

Number of latent classes

nstarts

Number of random starts. The default is 7 random starts.

seed

Simulation seed. If one value is provided, then only one start is performed.

maxiter

Maximum number of iterations

parmconv

Maximum absolute change in parameters

fac.oldxsi

Convergence acceleration factor which should take values between 0 and 1. The default is 0.75.

progress

An optional logical indicating whether iteration progress should be displayed.

object

Object of class fuzcluster

...

Further arguments to be passed

Value

A list with following entries

deviance

Deviance

iter

Number of iterations

pi_est

Estimated class probabilities

mu_est

Cluster means

sd_est

Cluster standard deviations

posterior

Individual posterior distributions of cluster membership

seed

Simulation seed for cluster solution

ic

Information criteria

References

Denoeux, T. (2013). Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering, 25, 119-130.

See Also

See fuzdiscr for estimating discrete distributions for fuzzy data.

See the fclust package for fuzzy clustering.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: 2 classes and 3 items
#############################################################################

#*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
# simulate data (2 classes and 3 items)
set.seed(876)
library(mvtnorm)
Ntot <- 1000  # number of subjects
# define SDs for simulating uncertainty
sd_uncertain <- c( .2, 1, 2 )

dat_m <- NULL   # data frame containing mean of membership function
dat_s <- NULL   # data frame containing SD of membership function

# *** Class 1
pi_class <- .6
Nclass <- Ntot * pi_class
mu <- c(3,1,0)
Sigma <- diag(3)
# simulate data
dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma )
dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass )
for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] }
dat_m <- rbind( dat_m, dat_m1 )
dat_s <- rbind( dat_s, dat_s1 )

# *** Class 2
pi_class <- .4
Nclass <- Ntot * pi_class
mu <- c(0,-2,0.4)
Sigma <- diag(c(0.5, 2, 2 ) )
# simulate data
dat_m1 <- mvtnorm::rmvnorm( Nclass, mean=mu, sigma=Sigma )
dat_s1 <- matrix( stats::runif( Nclass * 3 ), nrow=Nclass )
for ( ii in 1:3){ dat_s1[,ii] <- dat_s1[,ii] * sd_uncertain[ii] }
dat_m <- rbind( dat_m, dat_m1 )
dat_s <- rbind( dat_s, dat_s1 )
colnames(dat_s) <- colnames(dat_m) <- paste0("I", 1:3 )

#*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
# estimation

#*** Model 1: Clustering with 8 random starts
res1 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=8, maxiter=25)
summary(res1)
  ##  Number of iterations=22 (Seed=5090 )
  ##  ---------------------------------------------------
  ##  Class probabilities (2 Classes)
  ##  [1] 0.4083 0.5917
  ##
  ##  Means
  ##           I1      I2     I3
  ##  [1,] 0.0595 -1.9070 0.4011
  ##  [2,] 3.0682  1.0233 0.0359
  ##
  ##  Standard deviations
  ##         [,1]   [,2]   [,3]
  ##  [1,] 0.7238 1.3712 1.2647
  ##  [2,] 0.9740 0.8500 0.7523

#*** Model 2: Clustering with one start with seed 4550
res2 <- sirt::fuzcluster(K=2,dat_m, dat_s, nstarts=1, seed=5090 )
summary(res2)

#*** Model 3: Clustering for crisp data
#             (assuming no uncertainty, i.e. dat_s=0)
res3 <- sirt::fuzcluster(K=2,dat_m, dat_s=0*dat_s, nstarts=30, maxiter=25)
summary(res3)
  ##  Class probabilities (2 Classes)
  ##  [1] 0.3645 0.6355
  ##
  ##  Means
  ##           I1      I2      I3
  ##  [1,] 0.0463 -1.9221  0.4481
  ##  [2,] 3.0527  1.0241 -0.0008
  ##
  ##  Standard deviations
  ##         [,1]   [,2]   [,3]
  ##  [1,] 0.7261 1.4541 1.4586
  ##  [2,] 0.9933 0.9592 0.9535

#*** Model 4: kmeans cluster analysis
res4 <- stats::kmeans( dat_m, centers=2 )
  ##   K-means clustering with 2 clusters of sizes 607, 393
  ##   Cluster means:
  ##             I1        I2          I3
  ##   1 3.01550780  1.035848 -0.01662275
  ##   2 0.03448309 -2.008209  0.48295067

## End(Not run)

sirt

Supplementary Item Response Theory Models

v3.10-118
GPL (>= 2)
Authors
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)
Initial release
2021-09-22 17:45:34

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.