Grade of Membership Model (Joint Maximum Likelihood Estimation)
This function estimates the grade of membership model employing a joint maximum likelihood estimation method (Erosheva, 2002; p. 23ff.).
gom.jml(dat, K=2, seed=NULL, globconv=0.001, maxdevchange=0.001, maxiter=600, min.lambda=0.001, min.g=0.001)
dat |
Data frame of dichotomous item responses |
K |
Number of classes |
seed |
Seed value of random number generator. Deterministic starting values
are used for the default value |
globconv |
Global parameter convergence criterion |
maxdevchange |
Maximum change in relative deviance |
maxiter |
Maximum number of iterations |
min.lambda |
Minimum λ_{ik} parameter to be estimated |
min.g |
Minimum g_{pk} parameter to be estimated |
The item response model of the grade of membership model with K classes for dichotomous correct responses X_{pi} of person p on item i is
P(X_{pi}=1 | g_{p1}, …, g_{pK} )=∑_k λ_{ik} g_{pk} , ∑_k g_{pk}=1
A list with following entries:
lambda |
Data frame of item parameters λ_{ik} |
g |
Data frame of individual membership scores g_{pk} |
g.mean |
Mean membership scores |
gcut |
Discretized membership scores |
gcut.distr |
Distribution of discretized membership scores |
K |
Number of classes |
deviance |
Deviance |
ic |
Information criteria |
N |
Number of students |
score |
Person score |
iter |
Number of iterations |
datproc |
List with processed data (recoded data, starting values, ...) |
... |
Further values |
Erosheva, E. A. (2002). Grade of membership and latent structure models with application to disability survey data. PhD thesis, Carnegie Mellon University, Department of Statistics.
S3 method summary.gom
############################################################################# # EXAMPLE 1: TIMSS data ############################################################################# data( data.timss) dat <- data.timss$data[, grep("M", colnames(data.timss$data) ) ] # 2 Classes (deterministic starting values) m2 <- sirt::gom.jml(dat,K=2, maxiter=10 ) summary(m2) ## Not run: # 3 Classes with fixed seed and maximum number of iterations m3 <- sirt::gom.jml(dat,K=3, maxiter=50,seed=89) summary(m3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.