Reliability for Dichotomous Item Response Data Using the Method of Green and Yang (2009)
This function estimates the model-based reliability
of dichotomous data using the Green & Yang (2009) method.
The underlying factor model is D-dimensional where
the dimension D is specified by the argument
nfactors
. The factor solution is subject to the
application of the Schmid-Leiman transformation (see Reise, 2012;
Reise, Bonifay, & Haviland, 2013; Reise, Moore, & Haviland, 2010).
greenyang.reliability(object.tetra, nfactors)
object.tetra |
Object as the output of the function |
nfactors |
Number of factors (dimensions) |
A data frame with columns:
coefficient |
Name of the reliability measure. |
dimensions |
Number of dimensions |
estimate |
Reliability estimate |
This function needs the psych package.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667-696.
Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129-140.
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores, Journal of Personality Assessment, 92, 544-559.
See f1d.irt
for estimating the functional unidimensional
item response model.
This function uses reliability.nonlinearSEM
.
See also the MBESS::ci.reliability
function for estimating
reliability for polytomous item responses.
## Not run: ############################################################################# # EXAMPLE 1: Reliability estimation of Reading dataset data.read ############################################################################# miceadds::library_install("psych") set.seed(789) data( data.read ) dat <- data.read # calculate matrix of tetrachoric correlations dat.tetra <- psych::tetrachoric(dat) # using tetrachoric from psych package dat.tetra2 <- sirt::tetrachoric2(dat) # using tetrachoric2 from sirt package # perform parallel factor analysis fap <- psych::fa.parallel.poly(dat, n.iter=1 ) ## Parallel analysis suggests that the number of factors=3 ## and the number of components=2 # parallel factor analysis based on tetrachoric correlation matrix ## (tetrachoric2) fap2 <- psych::fa.parallel(dat.tetra2$rho, n.obs=nrow(dat), n.iter=1 ) ## Parallel analysis suggests that the number of factors=6 ## and the number of components=2 ## Note that in this analysis, uncertainty with respect to thresholds is ignored. # calculate reliability using a model with 4 factors greenyang.reliability( object.tetra=dat.tetra, nfactors=4 ) ## coefficient dimensions estimate ## Omega Total (1D) omega_1 1 0.771 ## Omega Total (4D) omega_t 4 0.844 ## Omega Hierarchical (4D) omega_h 4 0.360 ## Omega Hierarchical Asymptotic (4D) omega_ha 4 0.427 ## Explained Common Variance (4D) ECV 4 0.489 ## Explained Variance (First Eigenvalue) ExplVar NA 35.145 ## Eigenvalue Ratio (1st to 2nd Eigenvalue) EigenvalRatio NA 2.121 # calculation of Green-Yang-Reliability based on tetrachoric correlations # obtained by tetrachoric2 greenyang.reliability( object.tetra=dat.tetra2, nfactors=4 ) # The same result will be obtained by using fap as the input greenyang.reliability( object.tetra=fap, nfactors=4 ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.