Fit of a L_q Regression Model
Fits a regression model in the L_q norm (also labeled as the L_p norm).
In more detail,
the optimization function ∑_i | y_i - x_i β | ^p is optimized.
The nondifferentiable function is approximated by a differentiable approximation,
i.e., we use |x| \approx √{x^2 + \varepsilon } . The power p
can also be estimated by using est_pow=TRUE
, see
Giacalone, Panarello and Mattera (2018). The algorithm iterates between estimating
regression coefficients and the estimation of power values. The estimation of the
power based on a vector of residuals e
can be conducted using the
function lq_fit_estimate_power
.
Using the L_q norm in the regression is equivalent to assuming an expontial
power function for residuals (Giacalone et al., 2018). The density function and
a simulation function is provided by dexppow
and rexppow
, respectively.
See also the normalp package.
lq_fit(y, X, w=NULL, pow=2, eps=0.001, beta_init=NULL, est_pow=FALSE, optimizer="optim", eps_vec=10^seq(0,-10, by=-.5), conv=1e-4, miter=20, lower_pow=.1, upper_pow=5) lq_fit_estimate_power(e, pow_init=2, lower_pow=.1, upper_pow=10) dexppow(x, mu=0, sigmap=1, pow=2, log=FALSE) rexppow(n, mu=0, sigmap=1, pow=2, xbound=100, xdiff=.01)
y |
Dependent variable |
X |
Design matrix |
w |
Optional vector of weights |
pow |
Power p in L_q norm |
est_pow |
Logical indicating whether power should be estimated |
eps |
Parameter governing the differentiable approximation |
e |
Vector of resiuals |
pow_init |
Initial value of power |
beta_init |
Initial vector |
optimizer |
Can be |
eps_vec |
Vector with decreasing \varepsilon values used in optimization |
conv |
Convergence criterion |
miter |
Maximum number of iterations |
lower_pow |
Lower bound for estimated power |
upper_pow |
Upper bound for estimated power |
x |
Vector |
mu |
Location parameter |
sigmap |
Scale parameter |
log |
Logical indicating whether the logarithm should be provided |
n |
Sample size |
xbound |
Lower and upper bound for density approximation |
xdiff |
Grid width for density approximation |
List with following several entries
coefficients |
Vector of coefficients |
res_optim |
Results of optimization |
... |
More values |
Giacalone, M., Panarello, D., & Mattera, R. (2018). Multicollinearity in regression: an efficiency comparison between $L_p$-norm and least squares estimators. Quality & Quantity, 52(4), 1831-1859. doi: 10.1007/s11135-017-0571-y
############################################################################# # EXAMPLE 1: Small simulated example with fixed power ############################################################################# set.seed(98) N <- 300 x1 <- stats::rnorm(N) x2 <- stats::rnorm(N) par1 <- c(1,.5,-.7) y <- par1[1]+par1[2]*x1+par1[3]*x2 + stats::rnorm(N) X <- cbind(1,x1,x2) #- lm function in stats mod1 <- stats::lm.fit(y=y, x=X) #- use lq_fit function mod2 <- sirt::lq_fit( y=y, X=X, pow=2, eps=1e-4) mod1$coefficients mod2$coefficients ## Not run: ############################################################################# # EXAMPLE 2: Example with estimated power values ############################################################################# #*** simulate regression model with residuals from the exponential power distribution #*** using a power of .30 set.seed(918) N <- 2000 X <- cbind( 1, c(rep(1,N), rep(0,N)) ) e <- sirt::rexppow(n=2*N, pow=.3, xdiff=.01, xbound=200) y <- X %*% c(1,.5) + e #*** estimate model mod <- sirt::lq_fit( y=y, X=X, est_pow=TRUE, lower_pow=.1) mod1 <- stats::lm( y ~ 0 + X ) mod$coefficients mod$pow mod1$coefficients ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.