Item and Person Fit Statistics for the Partial Credit Model
Computes item and person fit statistics in the partial credit model (Wright & Masters, 1990). The rating scale model is accommodated as a particular partial credit model (see Example 3).
pcm.fit(b, theta, dat)
b |
Matrix with item category parameters (see Examples) |
theta |
Vector with estimated person parameters |
dat |
Dataset with item responses |
A list with entries
itemfit |
Item fit statistics |
personfit |
Person fit statistics |
Wright, B. D., & Masters, G. N. (1990). Computation of outfit and infit statistics. Rasch Measurement Transactions, 3:4, 84-85.
See also personfit.stat
for person fit statistics for dichotomous
item responses. See also the PerFit package for further person
fit statistics.
Item fit in other R packages:
eRm::itemfit
,
TAM::tam.fit
,
mirt::itemfit
,
ltm::item.fit
,
Person fit in other R packages:
eRm::itemfit
,
mirt::itemfit
,
ltm::person.fit
,
See pcm.conversion
for conversions of different
parametrizations of the partial credit model.
## Not run: ############################################################################# # EXAMPLE 1: Partial credit model ############################################################################# data(data.Students,package="CDM") dat <- data.Students # select items items <- c(paste0("sc", 1:4 ), paste0("mj", 1:4 ) ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1a: Partial credit model in TAM # estimate model mod1a <- TAM::tam.mml( resp=dat ) summary(mod1a) # estimate person parameters wle1a <- TAM::tam.wle(mod1a) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # parametrization in xsi parameters b2 <- matrix( mod1a$xsi$xsi, ncol=3, byrow=TRUE ) # convert b2 to b1 b1b <- 0*b1 b1b[,1] <- b2[,1] b1b[,2] <- rowSums( b2[,1:2] ) b1b[,3] <- rowSums( b2[,1:3] ) # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle1a$theta, dat) fit1a$item ############################################################################# # EXAMPLE 2: Rasch model ############################################################################# data(data.read) dat <- data.read #*** Rasch model in TAM # estimate model mod <- TAM::tam.mml( resp=dat ) summary(mod) # estimate person parameters wle <- TAM::tam.wle(mod) # extract item parameters b1 <- - mod$AXsi[, -1 ] # assess fit fit1a <- sirt::pcm.fit(b=b1, theta=wle$theta, dat) fit1a$item ############################################################################# # EXAMPLE 3: Rating scale model ############################################################################# data(data.Students,package="CDM") dat <- data.Students items <- paste0("sc", 1:4 ) dat <- dat[,items] dat <- dat[ rowSums( 1 - is.na(dat) ) > 0, ] #*** Model 1: Rating scale model in TAM # estimate model mod1 <- tam.mml( resp=dat, irtmodel="RSM") summary(mod1) # estimate person parameters wle1 <- tam.wle(mod1) # extract item parameters b1 <- - mod1a$AXsi[, -1 ] # fit statistic pcm.fit(b=b1, theta=wle1$theta, dat) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.