Person Parameter Estimation of the Rasch Copula Model (Braeken, 2011)
Ability estimates as maximum likelihood estimates (MLE) are provided by the Rasch copula model.
person.parameter.rasch.copula(raschcopula.object, numdiff.parm=0.001, conv.parm=0.001, maxiter=20, stepwidth=1, print.summary=TRUE, ...)
raschcopula.object |
Object which is generated by the coderasch.copula2 function. |
numdiff.parm |
Parameter h for numerical differentiation |
conv.parm |
Convergence criterion |
maxiter |
Maximum number of iterations |
stepwidth |
Maximal increment in iterations |
print.summary |
Print summary? |
... |
Further arguments to be passed |
A list with following entries
person |
Estimated person parameters |
se.inflat |
Inflation of individual standard errors due to local dependence |
theta.table |
Ability estimates for each unique response pattern |
pattern.in.data |
Item response pattern |
summary.theta.table |
Summary statistics of person parameter estimates |
See rasch.copula2
for estimating Rasch copula models.
############################################################################# # EXAMPLE 1: Reading Data ############################################################################# data(data.read) dat <- data.read # define item cluster itemcluster <- rep( 1:3, each=4 ) mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 6.35 ## Not run: ############################################################################# # EXAMPLE 2: 12 items nested within 3 item clusters (testlets) # Cluster 1 -> Items 1-4; Cluster 2 -> Items 6-9; Cluster 3 -> Items 10-12 ############################################################################# set.seed(967) I <- 12 # number of items n <- 450 # number of persons b <- seq(-2,2, len=I) # item difficulties b <- sample(b) # sample item difficulties theta <- stats::rnorm( n, sd=1 ) # person abilities # itemcluster itemcluster <- rep(0,I) itemcluster[ 1:4 ] <- 1 itemcluster[ 6:9 ] <- 2 itemcluster[ 10:12 ] <- 3 # residual correlations rho <- c( .35, .25, .30 ) # simulate data dat <- sirt::sim.rasch.dep( theta, b, itemcluster, rho ) colnames(dat) <- paste("I", seq(1,ncol(dat)), sep="") # estimate Rasch copula model mod1 <- sirt::rasch.copula2( dat, itemcluster=itemcluster ) summary(mod1) # person parameter estimation under the Rasch copula model pmod1 <- sirt::person.parameter.rasch.copula(raschcopula.object=mod1 ) ## Mean percentage standard error inflation ## missing.pattern Mperc.seinflat ## 1 1 10.48 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.