Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

prmse.subscores.scales

Proportional Reduction of Mean Squared Error (PRMSE) for Subscale Scores


Description

This function estimates the proportional reduction of mean squared error (PRMSE) according to Haberman (Haberman 2008; Haberman, Sinharay & Puhan, 2008; see Meijer et al. 2017 for an overview).

Usage

prmse.subscores.scales(data, subscale)

Arguments

data

An N \times I data frame of item responses

subscale

Vector of labels corresponding to subscales

Value

Matrix with columns corresponding to subscales
The symbol X denotes the subscale and Z the whole scale (see also in the Examples section for the structure of this matrix).

References

Haberman, S. J. (2008). When can subscores have value? Journal of Educational and Behavioral Statistics, 33, 204-229.

Haberman, S., Sinharay, S., & Puhan, G. (2008). Reporting subscores for institutions. British Journal of Mathematical and Statistical Psychology, 62, 79-95.

Meijer, R. R., Boeve, A. J., Tendeiro, J. N., Bosker, R. J., & Albers, C. J. (2017). The use of subscores in higher education: When is this useful?. Frontiers in Psychology | Educational Psychology, 8.

See Also

See the subscore package for computing subscores and the PRMSE measures, especially subscore::CTTsub.

Examples

#############################################################################
# EXAMPLE 1: PRMSE Reading data data.read
#############################################################################

data( data.read )
p1 <- sirt::prmse.subscores.scales(data=data.read,
         subscale=substring( colnames(data.read), 1,1 ) )
print( p1, digits=3 )
  ##                 A       B       C
  ## N         328.000 328.000 328.000
  ## nX          4.000   4.000   4.000
  ## M.X         2.616   2.811   3.253
  ## Var.X       1.381   1.059   1.107
  ## SD.X        1.175   1.029   1.052
  ## alpha.X     0.545   0.381   0.640
  ## [...]
  ## nZ         12.000  12.000  12.000
  ## M.Z         8.680   8.680   8.680
  ## Var.Z       5.668   5.668   5.668
  ## SD.Z        2.381   2.381   2.381
  ## alpha.Z     0.677   0.677   0.677
  ## [...]
  ## cor.TX_Z    0.799   0.835   0.684
  ## rmse.X      0.585   0.500   0.505
  ## rmse.Z      0.522   0.350   0.614
  ## rmse.XZ     0.495   0.350   0.478
  ## prmse.X     0.545   0.381   0.640
  ## prmse.Z     0.638   0.697   0.468
  ## prmse.XZ    0.674   0.697   0.677
#-> Scales A and B do not have lower RMSE,
#   but for scale C the RMSE is smaller than the RMSE of a
#   prediction based on a whole scale.

sirt

Supplementary Item Response Theory Models

v3.10-118
GPL (>= 2)
Authors
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)
Initial release
2021-09-22 17:45:34

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.