Pairwise Estimation Method of the Rasch Model
This function estimates the Rasch model with a minimum chi square estimation method (cited in Fischer, 2007, p. 544) which is a pairwise conditional likelihood estimation approach.
rasch.pairwise(dat, weights=NULL, conv=1e-04, maxiter=3000, progress=TRUE, b.init=NULL, zerosum=FALSE, power=1, direct_optim=TRUE) ## S3 method for class 'rasch.pairwise' summary(object, digits=3, file=NULL, ...)
dat |
An N \times I data frame of dichotomous item responses |
weights |
Optional vector of sampling weights |
conv |
Convergence criterion |
maxiter |
Maximum number of iterations |
progress |
Display iteration progress? |
b.init |
An optional vector of length I of item difficulties |
zerosum |
Optional logical indicating whether item difficulties should be centered in each iteration. The default is that no centering is conducted. |
power |
Power used for computing pairwise response probabilities like in row averaging approach |
direct_optim |
Logical indicating whether least squares criterion
funcion should be minimized with |
object |
Object of class |
digits |
Number of digits after decimal for rounding |
file |
Optional file name for summary output |
... |
Further arguments to be passed |
An object of class rasch.pairwise
with following entries
b |
Item difficulties |
eps |
Exponentiated item difficulties, i.e. |
iter |
Number of iterations |
conv |
Convergence criterion |
dat |
Original data frame |
freq.ij |
Frequency table of all item pairs |
item |
Summary table of item parameters |
Fischer, G. H. (2007). Rasch models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 515-585). Amsterdam: Elsevier.
See summary.rasch.pairwise
for a summary.
A slightly different implementation of this conditional pairwise method
is implemented in rasch.pairwise.itemcluster
.
Pairwise marginal likelihood estimation (also labeled as pseudolikelihood
estimation) can be conducted with rasch.pml3
.
############################################################################# # EXAMPLE 1: Reading data set | pairwise estimation Rasch model ############################################################################# data(data.read) dat <- data.read #*** Model 1: no constraint on item difficulties mod1 <- sirt::rasch.pairwise(dat) summary(mod1) #*** Model 2: sum constraint on item difficulties mod2 <- sirt::rasch.pairwise(dat, zerosum=TRUE) summary(mod2) ## Not run: #** obtain standard errors by bootstrap mod2$item$b # extract item difficulties # Bootstrap of item difficulties boot_pw <- function(data, indices ){ dd <- data[ indices, ] # bootstrap of indices mod <- sirt::rasch.pairwise( dat=dd, zerosum=TRUE, progress=FALSE) return(mod$item$b) } set.seed(986) library(boot) bmod2 <- boot::boot(data=dat, statistic=boot_pw, R=999 ) print(bmod2) summary(bmod2) # quantiles for bootstrap sample (and confidence interval) apply(bmod2$t, 2, stats::quantile, probs=c(.025, .5, .975) ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.