Take Posterior Predictive Draws for Functions of Networks
npostpred
takes a list or data frame, b
, and applies the function FUN
to each element of b
's net
member.
npostpred(b, FUN, ...)
b |
A list or data frame containing posterior network draws; these draws must take the form of a graph stack, and must be the member of |
FUN |
Function for which posterior predictive is to be estimated |
... |
Additional arguments to |
A series of posterior predictive draws
Carter T. Butts buttsc@uci.edu
Gelman, A.; Carlin, J.B.; Stern, H.S.; and Rubin, D.B. (1995). Bayesian Data Analysis. London: Chapman and Hall.
#Create some random data g<-rgraph(5) g.p<-0.8*g+0.2*(1-g) dat<-rgraph(5,5,tprob=g.p) #Define a network prior pnet<-matrix(ncol=5,nrow=5) pnet[,]<-0.5 #Define em and ep priors pem<-matrix(nrow=5,ncol=2) pem[,1]<-3 pem[,2]<-5 pep<-matrix(nrow=5,ncol=2) pep[,1]<-3 pep[,2]<-5 #Draw from the posterior b<-bbnam(dat,model="actor",nprior=pnet,emprior=pem,epprior=pep, burntime=100,draws=100) #Plot a summary of the posterior predictive of reciprocity hist(npostpred(b,grecip))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.