find point pairs with equal spatial coordinates
find point pairs with equal spatial coordinates
zerodist(obj, zero = 0.0, unique.ID = FALSE, memcmp = TRUE) zerodist2(obj1, obj2, zero = 0.0, memcmp = TRUE) remove.duplicates(obj, zero = 0.0, remove.second = TRUE, memcmp = TRUE)
obj |
object of, or extending, class SpatialPoints |
obj1 |
object of, or extending, class SpatialPoints |
obj2 |
object of, or extending, class SpatialPoints |
zero |
distance values less than or equal to this threshold value are considered to have zero distance (default 0.0); units are those of the coordinates for projected data or unknown projection, or km if coordinates are defined to be longitude/latitude |
unique.ID |
logical; if TRUE, return an ID (integer) for each point that is different only when two points do not share the same location |
memcmp |
use |
remove.second |
logical; if TRUE, the second of each pair of duplicate points is removed, if FALSE remove the first |
zerodist
and zerodist2
return a two-column matrix
with in each row pairs of row numbers with identical coordinates;
a matrix with zero rows is returned if no such pairs are found. For
zerodist
, row number pairs refer to row pairs in obj
. For
zerodist2
, row number pairs refer to rows in obj
and
obj2
, respectively. remove.duplicates
removes duplicate
observations if present, and else returns obj
.
When using kriging, duplicate observations sharing identical spatial locations result in singular covariance matrices. This function may help identify and remove spatial duplices. The full matrix with all pair-wise distances is not stored; the double loop is done at the C level.
When unique.ID=TRUE
is used, an integer index is returned. sp
1.0-14 returned the highest index, sp 1.0-15 and later return the
lowest index.
When zero
is 0.0 and memcmp
is not FALSE
,
zerodist
uses memcmp
to evaluate exact equality of
coordinates; there may be cases where this results in a different
evaluation compared to doing the double arithmetic of computing
distances.
data(meuse) summary(meuse) # pick 10 rows n <- 10 ran10 <- sample(nrow(meuse), size = n, replace = TRUE) meusedup <- rbind(meuse, meuse[ran10, ]) coordinates(meusedup) <- c("x", "y") zd <- zerodist(meusedup) sum(abs(zd[1:n,1] - sort(ran10))) # 0! # remove the duplicate rows: meusedup2 <- meusedup[-zd[,2], ] summary(meusedup2) meusedup3 <- subset(meusedup, !(1:nrow(meusedup) %in% zd[,2])) summary(meusedup3) coordinates(meuse) <- c("x", "y") zerodist2(meuse, meuse[c(10:33,1,10),])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.