Updates a fit
update
and update_resp
will update and (by default) re-fit a model. They do this mostly by extracting the call stored in the object, updating the call and evaluating that call. Using update(<fit>)
is a risky programming style (see Details). update_formulas(<mv fit>, ...)
can update formulas from a fitmv
fit as well as the single formula of a fit by the other fitting functions.
update_resp
handles a new response vector as produced by simulate
.
## S3 method for class 'HLfit' update(object, formula., ..., evaluate = TRUE) update_resp(object, newresp, ..., evaluate = TRUE) update_formulas(object, formula., ...)
object |
A return object from an HLfit call. |
formula. |
A standard |
newresp |
New response vector. |
... |
Additional arguments to the call, or arguments with changed values. Use name |
evaluate |
If TRUE, evaluate the new call else return the call. |
update_resp
updates various components of the fitted object, but not its data
element, as the latter approach would meet difficulties when the response is an expression (such as I(<some variable>^2)
) rather than simply a variable in the data. This implies that the object returned by update_resp
cannot be used as if the data
themselves had been updated.
Early versions of spaMM
's update
method relied on stats::update.formula
whose results endorse stats
's (sometimes annoying) convention that a formula without an explicit intercept term actually includes an intercept. spaMM::update.HLfit
was then defined to avoid this problem. Formula updates should still be carefully checked, as getting them perfect has not been on the priority list.
Various post-fit functions from base R may use update.formula
directly, rather than using automatic method selection for update
. update.formula
is not itself a generic, which leads to the following problem. To make update.formula()
work on multivariate-response fits, one would like to be able to redefine it as a generic, with an HLfit
method that would perform what update_formulas
does, but such a redefinition appears to be forbidden in a package distributed on CRAN. Instead it is suggested to define a new generic spaMM::update
, which could have a spaMM::update.formula
as a method (possibly itself a generic). This would be of limited interest as the new spaMM::update.formula
would be visible to spaMM::update
but not to stats::update
, and thus the post-fit functions from base R would still not use this method.
update(<fit>, ...)
, as a general rule, is tricky. update
methods are easily affected in a non-transparent way by changes in variables used in the original call. For example
foo <- rep(1,10)
m <- lm(rnorm(10)~1, weights=foo)
rm(foo)
update(m, .~.) # Error
To avoid such problems, spaMM
tries to avoid references to variables in the global environment, by enforcing that the data are explicitly provided to the fitting functions by the data
argument, and that any variable used in the prior.weights
argument is in the data.
Bugs can also result when calling update
on a fit produced within some function, say function somefn
calling fitme(data=mydata,...)
, as e.g. update(<fit>)
will then seek a global variable mydata
that may differ from the fitted mydata
which was local to somefn
.
update.formula(object)
returns an object of the same nature as formula(object)
. The other functions and methods return an HLfit fit of the same type as the input object, or a call object, depending on the evaluate
value. Warning: The object returned by update_resp
cannot be used safely for further programming, for the reason explained in the Details section.
data("wafers") ## First the fit to be updated: wFit <- HLfit(y ~X1*X3+X2*X3+I(X2^2)+(1|batch),family=Gamma(log), resid.model = ~ X3+I(X3^2) ,data=wafers) newresp <- simulate(wFit) update_resp(wFit,newresp=newresp) # For estimates given by Lee et al., Appl. Stochastic Models Bus. Ind. (2011) 27: 315-328: # Refit with given beta or/and phi values: betavals <- c(5.55,0.08,-0.14,-0.21,-0.08,-0.09,-0.09) # reconstruct fitted phi value from predictor for log(phi) Xphi <- with(wafers,cbind(1,X3,X3^2)) ## design matrix phifit <- exp(Xphi %*% c(-2.90,0.1,0.95)) upd_wafers <- wafers designX <- get_matrix(wFit) upd_wafers$off_b <- designX %*% betavals update(wFit,formula.= . ~ offset(off_b)+(1|batch), data=upd_wafers, ranFix=list(lambda=exp(-3.67),phi=phifit)) ## There are subtlety in performing REML fits of constrained models, ## illustrated by the fact that the following fit does not recover ## the original likelihood values, because dispersion parameters are ## estimated but the REML correction changes with the formula: upd_wafers$off_f <- designX %*% fixef(wFit) ## = predict(wFit,re.form=NA,type="link") update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers) # ## To maintain the original REML correction, Consider instead update(wFit,formula.= . ~ offset(off_f)+(1|batch), data=upd_wafers, REMLformula=formula(wFit)) ## recover original p_v and p_bv ## Alternatively, show original wFit as differences from betavals: update(wFit,formula.= . ~ . +offset(off_f), data=upd_wafers)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.