Feature Transformation – Binarizer (Transformer)
Apply thresholding to a column, such that values less than or equal to the
threshold
are assigned the value 0.0, and values greater than the
threshold are assigned the value 1.0. Column output is numeric for
compatibility with other modeling functions.
ft_binarizer( x, input_col, output_col, threshold = 0, uid = random_string("binarizer_"), ... )
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
threshold |
Threshold used to binarize continuous features. |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns a ml_transformer
,
a ml_estimator
, or one of their subclasses. The object contains a pointer to
a Spark Transformer
or Estimator
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the transformer or estimator appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a transformer is constructed then
immediately applied to the input tbl_spark
, returning a tbl_spark
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers:
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()
## Not run: library(dplyr) sc <- spark_connect(master = "local") iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE) iris_tbl %>% ft_binarizer( input_col = "Sepal_Length", output_col = "Sepal_Length_bin", threshold = 5 ) %>% select(Sepal_Length, Sepal_Length_bin, Species) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.