Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ft_pca

Feature Transformation – PCA (Estimator)


Description

PCA trains a model to project vectors to a lower dimensional space of the top k principal components.

Usage

ft_pca(
  x,
  input_col = NULL,
  output_col = NULL,
  k = NULL,
  uid = random_string("pca_"),
  ...
)

ml_pca(x, features = tbl_vars(x), k = length(features), pc_prefix = "PC", ...)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

k

The number of principal components

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

features

The columns to use in the principal components analysis. Defaults to all columns in x.

pc_prefix

Length-one character vector used to prepend names of components.

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.

ml_pca() is a wrapper around ft_pca() that returns a ml_model.

Value

The object returned depends on the class of x.

  • spark_connection: When x is a spark_connection, the function returns a ml_transformer, a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer or Estimator object and can be used to compose Pipeline objects.

  • ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the transformer or estimator appended to the pipeline.

  • tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied to the input tbl_spark, returning a tbl_spark

See Also

See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.

Examples

## Not run: 
library(dplyr)

sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

iris_tbl %>%
  select(-Species) %>%
  ml_pca(k = 2)

## End(Not run)

sparklyr

R Interface to Apache Spark

v1.6.2
Apache License 2.0 | file LICENSE
Authors
Javier Luraschi [aut], Kevin Kuo [aut] (<https://orcid.org/0000-0001-7803-7901>), Kevin Ushey [aut], JJ Allaire [aut], Samuel Macedo [ctb], Hossein Falaki [aut], Lu Wang [aut], Andy Zhang [aut], Yitao Li [aut, cre] (<https://orcid.org/0000-0002-1261-905X>), Jozef Hajnala [ctb], Maciej Szymkiewicz [ctb] (<https://orcid.org/0000-0003-1469-9396>), Wil Davis [ctb], RStudio [cph], The Apache Software Foundation [aut, cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.