Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ml_chisquare_test

Chi-square hypothesis testing for categorical data.


Description

Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical.

Usage

ml_chisquare_test(x, features, label)

Arguments

x

A tbl_spark.

features

The name(s) of the feature columns. This can also be the name of a single vector column created using ft_vector_assembler().

label

The name of the label column.

Value

A data frame with one row for each (feature, label) pair with p-values, degrees of freedom, and test statistics.

Examples

## Not run: 
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)

features <- c("Petal_Width", "Petal_Length", "Sepal_Length", "Sepal_Width")

ml_chisquare_test(iris_tbl, features = features, label = "Species")

## End(Not run)

sparklyr

R Interface to Apache Spark

v1.6.2
Apache License 2.0 | file LICENSE
Authors
Javier Luraschi [aut], Kevin Kuo [aut] (<https://orcid.org/0000-0001-7803-7901>), Kevin Ushey [aut], JJ Allaire [aut], Samuel Macedo [ctb], Hossein Falaki [aut], Lu Wang [aut], Andy Zhang [aut], Yitao Li [aut, cre] (<https://orcid.org/0000-0002-1261-905X>), Jozef Hajnala [ctb], Maciej Szymkiewicz [ctb] (<https://orcid.org/0000-0003-1469-9396>), Wil Davis [ctb], RStudio [cph], The Apache Software Foundation [aut, cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.