Evaluate the Model on a Validation Set
Compute performance metrics.
ml_evaluate(x, dataset) ## S3 method for class 'ml_model_logistic_regression' ml_evaluate(x, dataset) ## S3 method for class 'ml_logistic_regression_model' ml_evaluate(x, dataset) ## S3 method for class 'ml_model_linear_regression' ml_evaluate(x, dataset) ## S3 method for class 'ml_linear_regression_model' ml_evaluate(x, dataset) ## S3 method for class 'ml_model_generalized_linear_regression' ml_evaluate(x, dataset) ## S3 method for class 'ml_generalized_linear_regression_model' ml_evaluate(x, dataset) ## S3 method for class 'ml_model_clustering' ml_evaluate(x, dataset) ## S3 method for class 'ml_model_classification' ml_evaluate(x, dataset) ## S3 method for class 'ml_evaluator' ml_evaluate(x, dataset)
x |
An ML model object or an evaluator object. |
dataset |
The dataset to be validate the model on. |
## Not run: sc <- spark_connect(master = "local") iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE) ml_gaussian_mixture(iris_tbl, Species ~ .) %>% ml_evaluate(iris_tbl) ml_kmeans(iris_tbl, Species ~ .) %>% ml_evaluate(iris_tbl) ml_bisecting_kmeans(iris_tbl, Species ~ .) %>% ml_evaluate(iris_tbl) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.