Tidying methods for Spark ML linear models
These methods summarize the results of Spark ML models into tidy forms.
## S3 method for class 'ml_model_generalized_linear_regression' tidy(x, exponentiate = FALSE, ...) ## S3 method for class 'ml_model_linear_regression' tidy(x, ...) ## S3 method for class 'ml_model_generalized_linear_regression' augment( x, newdata = NULL, type.residuals = c("working", "deviance", "pearson", "response"), ... ) ## S3 method for class 'ml_model_linear_regression' augment( x, newdata = NULL, type.residuals = c("working", "deviance", "pearson", "response"), ... ) ## S3 method for class 'ml_model_generalized_linear_regression' glance(x, ...) ## S3 method for class 'ml_model_linear_regression' glance(x, ...)
x |
a Spark ML model. |
exponentiate |
For GLM, whether to exponentiate the coefficient estimates (typical for logistic regression.) |
... |
extra arguments (not used.) |
newdata |
a tbl_spark of new data to use for prediction. |
type.residuals |
type of residuals, defaults to |
The residuals attached by augment
are of type "working" by default,
which is different from the default of "deviance" for residuals()
or sdf_residuals()
.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.