Spark ML – Multilayer Perceptron
Classification model based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax.
ml_multilayer_perceptron_classifier( x, formula = NULL, layers = NULL, max_iter = 100, step_size = 0.03, tol = 1e-06, block_size = 128, solver = "l-bfgs", seed = NULL, initial_weights = NULL, thresholds = NULL, features_col = "features", label_col = "label", prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("multilayer_perceptron_classifier_"), ... ) ml_multilayer_perceptron( x, formula = NULL, layers, max_iter = 100, step_size = 0.03, tol = 1e-06, block_size = 128, solver = "l-bfgs", seed = NULL, initial_weights = NULL, features_col = "features", label_col = "label", thresholds = NULL, prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("multilayer_perceptron_classifier_"), response = NULL, features = NULL, ... )
x |
A |
formula |
Used when |
layers |
A numeric vector describing the layers – each element in the vector gives the size of a layer. For example, |
max_iter |
The maximum number of iterations to use. |
step_size |
Step size to be used for each iteration of optimization (> 0). |
tol |
Param for the convergence tolerance for iterative algorithms. |
block_size |
Block size for stacking input data in matrices to speed up the computation. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is between 10 and 1000. Default: 128 |
solver |
The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs" |
seed |
A random seed. Set this value if you need your results to be reproducible across repeated calls. |
initial_weights |
The initial weights of the model. |
thresholds |
Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value |
features_col |
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by |
label_col |
Label column name. The column should be a numeric column. Usually this column is output by |
prediction_col |
Prediction column name. |
probability_col |
Column name for predicted class conditional probabilities. |
raw_prediction_col |
Raw prediction (a.k.a. confidence) column name. |
uid |
A character string used to uniquely identify the ML estimator. |
... |
Optional arguments; see Details. |
response |
(Deprecated) The name of the response column (as a length-one character vector.) |
features |
(Deprecated) The name of features (terms) to use for the model fit. |
When x
is a tbl_spark
and formula
(alternatively, response
and features
) is specified, the function returns a ml_model
object wrapping a ml_pipeline_model
which contains data pre-processing transformers, the ML predictor, and, for classification models, a post-processing transformer that converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label"
) can be used to specify the name of the predicted label column. In addition to the fitted ml_pipeline_model
, ml_model
objects also contain a ml_pipeline
object where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline"
to faciliate model refresh workflows.
ml_multilayer_perceptron()
is an alias for ml_multilayer_perceptron_classifier()
for backwards compatibility.
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns an instance of a ml_estimator
object. The object contains a pointer to
a Spark Predictor
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the predictor appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a predictor is constructed then
immediately fit with the input tbl_spark
, returning a prediction model.
tbl_spark
, with formula
: specified When formula
is specified, the input tbl_spark
is first transformed using a
RFormula
transformer before being fit by
the predictor. The object returned in this case is a ml_model
which is a
wrapper of a ml_pipeline_model
.
See http://spark.apache.org/docs/latest/ml-classification-regression.html for more information on the set of supervised learning algorithms.
Other ml algorithms:
ml_aft_survival_regression()
,
ml_decision_tree_classifier()
,
ml_gbt_classifier()
,
ml_generalized_linear_regression()
,
ml_isotonic_regression()
,
ml_linear_regression()
,
ml_linear_svc()
,
ml_logistic_regression()
,
ml_naive_bayes()
,
ml_one_vs_rest()
,
ml_random_forest_classifier()
## Not run: sc <- spark_connect(master = "local") iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE) partitions <- iris_tbl %>% sdf_random_split(training = 0.7, test = 0.3, seed = 1111) iris_training <- partitions$training iris_test <- partitions$test mlp_model <- iris_training %>% ml_multilayer_perceptron_classifier(Species ~ ., layers = c(4, 3, 3)) pred <- ml_predict(mlp_model, iris_test) ml_multiclass_classification_evaluator(pred) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.