Read file(s) into a Spark DataFrame using a custom reader
Run a custom R function on Spark workers to ingest data from one or more files into a Spark DataFrame, assuming all files follow the same schema.
spark_read(sc, paths, reader, columns, packages = TRUE, ...)
sc |
A |
paths |
A character vector of one or more file URIs (e.g., c("hdfs://localhost:9000/file.txt", "hdfs://localhost:9000/file2.txt")) |
reader |
A self-contained R function that takes a single file URI as argument and returns the data read from that file as a data frame. |
columns |
a named list of column names and column types of the resulting data frame (e.g., list(column_1 = "integer", column_2 = "character")), or a list of column names only if column types should be inferred from the data (e.g., list("column_1", "column_2"), or NULL if column types should be inferred and resulting data frame can have arbitrary column names |
packages |
A list of R packages to distribute to Spark workers |
... |
Optional arguments; currently unused. |
Other Spark serialization routines:
collect_from_rds()
,
spark_load_table()
,
spark_read_avro()
,
spark_read_csv()
,
spark_read_delta()
,
spark_read_jdbc()
,
spark_read_json()
,
spark_read_libsvm()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_source()
,
spark_read_table()
,
spark_read_text()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()
## Not run: library(sparklyr) sc <- spark_connect( master = "yarn", spark_home = "~/spark/spark-2.4.5-bin-hadoop2.7" ) # This is a contrived example to show reader tasks will be distributed across # all Spark worker nodes spark_read( sc, rep("/dev/null", 10), reader = function(path) system("hostname", intern = TRUE), columns = c(hostname = "string") ) %>% sdf_collect() ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.