Read libsvm file into a Spark DataFrame.
Read libsvm file into a Spark DataFrame.
spark_read_libsvm( sc, name = NULL, path = name, repartition = 0, memory = TRUE, overwrite = TRUE, ... )
sc |
A |
name |
The name to assign to the newly generated table. |
path |
The path to the file. Needs to be accessible from the cluster. Supports the "hdfs://", "s3a://" and "file://" protocols. |
repartition |
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning. |
memory |
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?) |
overwrite |
Boolean; overwrite the table with the given name if it already exists? |
... |
Optional arguments; currently unused. |
Other Spark serialization routines:
collect_from_rds()
,
spark_load_table()
,
spark_read_avro()
,
spark_read_csv()
,
spark_read_delta()
,
spark_read_jdbc()
,
spark_read_json()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_source()
,
spark_read_table()
,
spark_read_text()
,
spark_read()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.