Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

surf.gls

Fits a Trend Surface by Generalized Least-squares


Description

Fits a trend surface by generalized least-squares.

Usage

surf.gls(np, covmod, x, y, z, nx = 1000, ...)

Arguments

np

degree of polynomial surface

covmod

function to evaluate covariance or correlation function

x

x coordinates or a data frame with columns x, y, z

y

y coordinates

z

z coordinates. Will supersede x$z

nx

Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object.

...

parameters for covmod

Value

list with components

beta

the coefficients

x
y
z

and others for internal use only.

References

Ripley, B. D. (1981) Spatial Statistics. Wiley.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Examples

library(MASS)  # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)

prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, type = "n")
contour(sesurf, levels = c(22, 25), add = TRUE)

spatial

Functions for Kriging and Point Pattern Analysis

v7.3-14
GPL-2 | GPL-3
Authors
Brian Ripley [aut, cre, cph], Roger Bivand [ctb], William Venables [cph]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.