Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Fiksel

The Fiksel Interaction


Description

Creates an instance of Fiksel's double exponential pairwise interaction point process model, which can then be fitted to point pattern data.

Usage

Fiksel(r, hc=NA, kappa)

Arguments

r

The interaction radius of the Fiksel model

hc

The hard core distance

kappa

The rate parameter

Details

Fiksel (1984) introduced a pairwise interaction point process with the following interaction function c. For two points u and v separated by a distance d=||u-v||, the interaction c(u,v) is equal to 0 if d < h, equal to 1 if d > r, and equal to

exp(a * exp(-kappa * d))

if h <= d <= r, where h,r,kappa,a are parameters.

A graph of this interaction function is shown in the Examples. The interpretation of the parameters is as follows.

  • h is the hard core distance: distinct points are not permitted to come closer than a distance h apart.

  • r is the interaction range: points further than this distance do not interact.

  • kappa is the rate or slope parameter, controlling the decay of the interaction as distance increases.

  • a is the interaction strength parameter, controlling the strength and type of interaction. If a is zero, the process is Poisson. If a is positive, the process is clustered. If a is negative, the process is inhibited (regular).

The function ppm(), which fits point process models to point pattern data, requires an argument of class "interact" describing the interpoint interaction structure of the model to be fitted. The appropriate description of the Fiksel pairwise interaction is yielded by the function Fiksel(). See the examples below.

The parameters h, r and kappa must be fixed and given in the call to Fiksel, while the canonical parameter a is estimated by ppm().

To estimate h, r andkappa it is possible to use profilepl. The maximum likelihood estimator ofh is the minimum interpoint distance.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by n/(n+1), where n is the number of data points.

See also Stoyan, Kendall and Mecke (1987) page 161.

Value

An object of class "interact" describing the interpoint interaction structure of the Fiksel process with interaction radius r, hard core distance hc and rate parameter kappa.

Author(s)

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Australian and New Zealand Journal of Statistics 42, 283–322.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Stoyan, D, Kendall, W.S. and Mecke, J. (1987) Stochastic geometry and its applications. Wiley.

See Also

Examples

Fiksel(r=1,hc=0.02, kappa=2)
   # prints a sensible description of itself

   data(spruces)
   X <- unmark(spruces)

   fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
   plot(fitin(fit))

spatstat.core

Core Functionality of the 'spatstat' Family

v2.1-2
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Kasper Klitgaard Berthelsen [ctb], Achmad Choiruddin [ctb], Jean-Francois Coeurjolly [ctb], Ottmar Cronie [ctb], Tilman Davies [ctb], Julian Gilbey [ctb], Yongtao Guan [ctb], Ute Hahn [ctb], Kassel Hingee [ctb], Abdollah Jalilian [ctb], Marie-Colette van Lieshout [ctb], Greg McSwiggan [ctb], Tuomas Rajala [ctb], Suman Rakshit [ctb], Dominic Schuhmacher [ctb], Rasmus Plenge Waagepetersen [ctb], Hangsheng Wang [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.