Smooth a Signed or Vector-Valued Measure
Apply kernel smoothing to a signed measure or vector-valued measure.
## S3 method for class 'msr' Smooth(X, ..., drop=TRUE)
X |
Object of class |
... |
Arguments passed to |
drop |
Logical. If |
This function applies kernel smoothing to a signed measure or
vector-valued measure X
. The Gaussian kernel is used.
The object X
would typically have been created by
residuals.ppm
or msr
.
A pixel image or a list of pixel images.
For scalar-valued measures, a pixel image (object of class
"im"
) provided drop=TRUE
.
For vector-valued measures (or if drop=FALSE
),
a list of pixel images; the list also
belongs to the class "solist"
so that it can be printed and plotted.
Adrian Baddeley Adrian.Baddeley@curtin.edu.au
Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005) Residual analysis for spatial point processes. Journal of the Royal Statistical Society, Series B 67, 617–666.
Baddeley, A., Moller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes. Annals of the Institute of Statistical Mathematics 60, 627–649.
X <- rpoispp(function(x,y) { exp(3+3*x) }) fit <- ppm(X, ~x+y) rp <- residuals(fit, type="pearson") rs <- residuals(fit, type="score") plot(Smooth(rp)) plot(Smooth(rs))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.