Bandwidth Selection for Diffusion Smoother by Likelihood Cross-Validation
Selects an optimal bandwidth for diffusion smoothing by point process likelihood cross-validation.
bw.pplHeat(X, ..., srange=NULL, ns=16, sigma=NULL, leaveoneout=TRUE, verbose = TRUE)
X |
Point pattern (object of class |
... |
Arguments passed to |
srange |
Numeric vector of length 2 specifying a range of bandwidths to be considered. |
ns |
Integer. Number of candidate bandwidths to be considered. |
sigma |
Maximum smoothing bandwidth.
A numeric value, or a pixel image, or a |
leaveoneout |
Logical value specifying whether intensity values at data points should be estimated using the leave-one-out rule. |
verbose |
Logical value specifying whether to print progress reports. |
This algorithm selects the optimal global bandwidth for
kernel estimation of intensity for the dataset X
using diffusion smoothing densityHeat.ppp
.
If sigma
is a numeric value, the algorithm finds the
optimal bandwidth tau <= sigma
.
If sigma
is a pixel image or function, the algorithm
finds the optimal fraction 0 < f <= 1
such that
smoothing with f * sigma
would be optimal.
A numerical value giving the selected bandwidth
(if sigma
was a numeric value)
or the selected fraction of the maximum bandwidth
(if sigma
was a pixel image or function).
The result also belongs to the class "bw.optim"
which can be
plotted.
Adrian Baddeley and Tilman Davies.
bw.CvLHeat
for an alternative method.
online <- interactive() if(!online) op <- spatstat.options(npixel=32) f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) } X <- rpoint(15, f, win=letterR) plot(X) b <- bw.pplHeat(X, sigma=0.25) b plot(b) if(!online) spatstat.options(op)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.