Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

coef.ppm

Coefficients of Fitted Point Process Model


Description

Given a point process model fitted to a point pattern, extract the coefficients of the fitted model. A method for coef.

Usage

## S3 method for class 'ppm'
coef(object, ...)

Arguments

object

The fitted point process model (an object of class "ppm")

...

Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "ppm"). Such objects are produced by the maximum pseudolikelihood fitting algorithm ppm).

This function extracts the vector of coefficients of the fitted model. This is the estimate of the parameter vector θ such that the conditional intensity of the model is of the form

λ(u,x) = exp(θ . S(u,x))

where S(u,x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson process.

Use print.ppm to print a more useful description of the fitted model.

Value

A vector containing the fitted coefficients.

Author(s)

and Rolf Turner r.turner@auckland.ac.nz

See Also

Examples

data(cells)

    poi <- ppm(cells, ~1, Poisson())
    coef(poi)
    # This is the log of the fitted intensity of the Poisson process

    stra <- ppm(cells, ~1, Strauss(r=0.07))
    coef(stra)

    # The two entries "(Intercept)" and "Interaction"
    # are respectively log(beta) and log(gamma)
    # in the usual notation for Strauss(beta, gamma, r)

spatstat.core

Core Functionality of the 'spatstat' Family

v2.1-2
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Kasper Klitgaard Berthelsen [ctb], Achmad Choiruddin [ctb], Jean-Francois Coeurjolly [ctb], Ottmar Cronie [ctb], Tilman Davies [ctb], Julian Gilbey [ctb], Yongtao Guan [ctb], Ute Hahn [ctb], Kassel Hingee [ctb], Abdollah Jalilian [ctb], Marie-Colette van Lieshout [ctb], Greg McSwiggan [ctb], Tuomas Rajala [ctb], Suman Rakshit [ctb], Dominic Schuhmacher [ctb], Rasmus Plenge Waagepetersen [ctb], Hangsheng Wang [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.