Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

markvario

Mark Variogram


Description

Estimate the mark variogram of a marked point pattern.

Usage

markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)

Arguments

X

The observed point pattern. An object of class "ppp" or something acceptable to as.ppp. It must have marks which are numeric.

correction

A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.

r

numeric vector. The values of the argument r at which the mark variogram gamma(r) should be evaluated. There is a sensible default.

method

A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".

...

Other arguments passed to markcorr, or passed to the density estimation routine (density, loess or sm.density) selected by method.

normalise

If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram gamma(r) of a marked point process X is a measure of the dependence between the marks of two points of the process a distance r apart. It is informally defined as

gamma(r) = E[(1/2) * (M1 - M2)^2 ]

where E[ ] denotes expectation and M1,M2 are the marks attached to two points of the process a distance r apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r

the values of the argument r at which the mark variogram gamma(r) has been estimated

theo

the theoretical value of gamma(r) when the marks attached to different points are independent; equal to the sample variance of the marks

together with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function gamma(r) obtained by the edge corrections named.

Author(s)

and Rolf Turner r.turner@auckland.ac.nz

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Mase, S. (1996) The threshold method for estimating annual rainfall. Annals of the Institute of Statistical Mathematics 48 (1996) 201-213.

Waelder, O. and Stoyan, D. (1996) On variograms in point process statistics. Biometrical Journal 38 (1996) 895-905.

See Also

Mark correlation function markcorr for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued marks.

Examples

# Longleaf Pine data
    # marks represent tree diameter
    data(longleaf)
    # Subset of this large pattern
    swcorner <- owin(c(0,100),c(0,100))
    sub <- longleaf[ , swcorner]
    # mark correlation function
    mv <- markvario(sub)
    plot(mv)

spatstat.core

Core Functionality of the 'spatstat' Family

v2.1-2
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Kasper Klitgaard Berthelsen [ctb], Achmad Choiruddin [ctb], Jean-Francois Coeurjolly [ctb], Ottmar Cronie [ctb], Tilman Davies [ctb], Julian Gilbey [ctb], Yongtao Guan [ctb], Ute Hahn [ctb], Kassel Hingee [ctb], Abdollah Jalilian [ctb], Marie-Colette van Lieshout [ctb], Greg McSwiggan [ctb], Tuomas Rajala [ctb], Suman Rakshit [ctb], Dominic Schuhmacher [ctb], Rasmus Plenge Waagepetersen [ctb], Hangsheng Wang [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.