Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

quantess

Quantile Tessellation


Description

Divide space into tiles which contain equal amounts of stuff.

Usage

quantess(M, Z, n, ...)

## S3 method for class 'owin'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

## S3 method for class 'ppp'
quantess(M, Z, n, ..., type=2, origin=c(0,0), eps=NULL)

## S3 method for class 'im'
quantess(M, Z, n, ..., type=2, origin=c(0,0))

Arguments

M

A spatial object (such as a window, point pattern or pixel image) determining the weight or amount of stuff at each location.

Z

A spatial covariate (a pixel image or a function(x,y)) or one of the strings "x" or "y" indicating the Cartesian coordinates x or y, or one of the strings "rad" or "ang" indicating polar coordinates. The range of values of Z will be broken into n bands containing equal amounts of stuff.

n

Number of bands. A positive integer.

type

Integer specifying the rule for calculating quantiles. Passed to quantile.default.

...

Additional arguments passed to quadrats or tess defining another tessellation which should be intersected with the quantile tessellation.

origin

Location of the origin of polar coordinates, if Z="rad" or Z="ang". Either a numeric vector of length 2 giving the location, or a point pattern containing only one point, or a list with two entries named x and y, or one of the character strings "centroid", "midpoint", "left", "right", "top", "bottom", "topleft", "bottomleft", "topright" or "bottomright" (partially matched).

eps

Optional. The size of pixels in the approximation which is used to compute the quantiles. A positive numeric value, or vector of two positive numeric values.

Details

A quantile tessellation is a division of space into pieces which contain equal amounts of stuff.

The function quantess computes a quantile tessellation and returns the tessellation itself. The function quantess is generic, with methods for windows (class "owin"), point patterns ("ppp") and pixel images ("im").

The first argument M (for mass) specifies the spatial distribution of stuff that is to be divided. If M is a window, the area of the window is to be divided into n equal pieces. If M is a point pattern, the number of points in the pattern is to be divided into n equal parts, as far as possible. If M is a pixel image, the pixel values are interpreted as weights, and the total weight is to be divided into n equal parts.

The second argument Z is a spatial covariate. The range of values of Z will be divided into n bands, each containing the same total weight. That is, we determine the quantiles of Z with weights given by M.

For convenience, additional arguments ... can be given, to further subdivide the tiles of the tessellation. These arguments should be recognised by one of the functions quadrats or tess. The tessellation determined by these arguments is intersected with the quantile tessellation.

The result of quantess is a tessellation of as.owin(M) determined by the quantiles of Z.

Value

A tessellation (object of class "tess").

Author(s)

Original idea by Ute Hahn. Implemented in spatstat by Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak rubak@math.aau.dk.

See Also

Examples

plot(quantess(letterR, "x", 5))

  plot(quantess(bronzefilter, "x", 6))
  points(unmark(bronzefilter))

  plot(quantess(letterR, "rad", 7, origin=c(2.8, 1.5)))
  plot(quantess(letterR, "ang", 7, origin=c(2.8, 1.5)))

  opa <- par(mar=c(0,0,2,5))
  A <- quantess(Window(bei), bei.extra$elev, 4)
  plot(A, ribargs=list(las=1))
  
  B <- quantess(bei, bei.extra$elev, 4)
  tilenames(B) <- paste(spatstat.utils::ordinal(1:4), "quartile")
  plot(B, ribargs=list(las=1))
  points(bei, pch=".", cex=2, col="white")
  par(opa)

spatstat.geom

Geometrical Functionality of the 'spatstat' Family

v2.1-0
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Tilman Davies [ctb], Ute Hahn [ctb], Abdollah Jalilian [ctb], Sebastian Meyer [ctb], Suman Rakshit [ctb], Dominic Schuhmacher [ctb], Rasmus Waagepetersen [ctb]
Initial release
2021-04-15

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.