Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

density.linnet

Kernel Smoothing of Linear Network


Description

Compute a kernel smoothed intensity function for the line segments of a linear network.

Usage

## S3 method for class 'linnet'
density(x, ...)

Arguments

x

Linear network (object of class "linnet")

...

Arguments passed to density.psp to control the amount of smoothing and the spatial resolution of the result.

Details

This is the method for the generic function density for the class "linnet" (linear networks).

The network x is first converted to a line segment pattern (object of class "psp"). Then the method density.psp is applied to the segment pattern.

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convolution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments.

The intensity of a line segment pattern is the (spatially-varying) amount of segment length per unit area, expressed in the same units as the coordinates of x. If the units of x are in metres, then an intensity value of 3 means that there are 3 metres of segment length per square metre of spatial domain.

See density.psp for more details.

Value

A pixel image in two dimensions (object of class "im") or a numeric vector.

Author(s)

Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak rubak@math.aau.dk.

See Also

Examples

D <- density(simplenet, 0.1)
  plot(D)
  plot(simplenet, add=TRUE, col="white")
  ## compare with average intensity
  volume(simplenet)/area(Window(simplenet))

spatstat.linnet

Linear Networks Functionality of the 'spatstat' Family

v2.1-1
GPL (>= 2)
Authors
Adrian Baddeley [aut, cre], Rolf Turner [aut], Ege Rubak [aut], Ottmar Cronie [ctb], Tilman Davies [ctb], Greg McSwiggan [ctb], Suman Rakshit [ctb]
Initial release
2021-03-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.