Saddlepoint approximation of global Moran's I test
The function implements Tiefelsdorf's application of the Saddlepoint approximation to global Moran's I's reference distribution.
lm.morantest.sad(model, listw, zero.policy=NULL, alternative="greater", spChk=NULL, resfun=weighted.residuals, tol=.Machine$double.eps^0.5, maxiter=1000, tol.bounds=0.0001, zero.tol = 1e-07, Omega=NULL, save.M=NULL, save.U=NULL) ## S3 method for class 'moransad' print(x, ...) ## S3 method for class 'moransad' summary(object, ...) ## S3 method for class 'summary.moransad' print(x, ...)
model |
an object of class |
listw |
a |
zero.policy |
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA |
alternative |
a character string specifying the alternative hypothesis, must be one of greater (default), less or two.sided. |
spChk |
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use |
resfun |
default: weighted.residuals; the function to be used to extract residuals from the |
tol |
the desired accuracy (convergence tolerance) for |
maxiter |
the maximum number of iterations for |
tol.bounds |
offset from bounds for |
zero.tol |
tolerance used to find eigenvalues close to absolute zero |
Omega |
A SAR process matrix may be passed in to test an alternative hypothesis, for example |
save.M |
return the full M matrix for use in |
save.U |
return the full U matrix for use in |
x |
object to be printed |
object |
object to be summarised |
... |
arguments to be passed through |
The function involves finding the eigenvalues of an n by n matrix, and numerically finding the root for the Saddlepoint approximation, and should therefore only be used with care when n is large.
A list of class moransad
with the following components:
statistic |
the value of the saddlepoint approximation of the standard deviate of global Moran's I. |
p.value |
the p-value of the test. |
estimate |
the value of the observed global Moran's I. |
alternative |
a character string describing the alternative hypothesis. |
method |
a character string giving the method used. |
data.name |
a character string giving the name(s) of the data. |
internal1 |
Saddlepoint omega, r and u |
internal2 |
f.root, iter and estim.prec from |
df |
degrees of freedom |
tau |
eigenvalues (excluding zero values) |
Roger Bivand Roger.Bivand@nhh.no
Tiefelsdorf, M. 2002 The Saddlepoint approximation of Moran's I and local Moran's Ii reference distributions and their numerical evaluation. Geographical Analysis, 34, pp. 187–206; Bivand RS, Wong DWS 2018 Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716–748 doi: 10.1007/s11749-018-0599-x
eire <- st_read(system.file("shapes/eire.shp", package="spData")[1]) row.names(eire) <- as.character(eire$names) st_crs(eire) <- "+proj=utm +zone=30 +ellps=airy +units=km" eire.nb <- poly2nb(eire) e.lm <- lm(OWNCONS ~ ROADACC, data=eire) lm.morantest(e.lm, nb2listw(eire.nb)) lm.morantest.sad(e.lm, nb2listw(eire.nb)) summary(lm.morantest.sad(e.lm, nb2listw(eire.nb))) e.wlm <- lm(OWNCONS ~ ROADACC, data=eire, weights=RETSALE) lm.morantest(e.wlm, nb2listw(eire.nb), resfun=rstudent) lm.morantest.sad(e.wlm, nb2listw(eire.nb), resfun=rstudent)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.