Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

spls-internal

Internal SPLS functions


Description

Internal SPLS functions.

Usage

heatmap.spls( mat, coln=16, as='n', ... )
spls.dv( Z, eta, kappa, eps, maxstep )
ust( b, eta )
correctp( x, y, eta, K, kappa, select, fit )
cv.split( y, fold )
wpls( x, y, V, K=ncol(x), type="pls1",
        center.x=TRUE, scale.x=FALSE )
sgpls.binary( x, y, K, eta, scale.x=TRUE,
        eps=1e-5, denom.eps=1e-20, zero.eps=1e-5, maxstep=100,
        br=TRUE, ftype='iden' )
sgpls.multi( x, y, K, eta, scale.x=TRUE,
        eps=1e-5, denom.eps=1e-20, zero.eps=1e-5, maxstep=100,
        br=TRUE, ftype='iden' )
cv.sgpls.binary( x, y, fold=10, K, eta, scale.x=TRUE, plot.it=TRUE,
    br=TRUE, ftype='iden', n.core=8 )
cv.sgpls.multi( x, y, fold=10, K, eta, scale.x=TRUE, plot.it=TRUE,
    br=TRUE, ftype='iden', n.core=8 )

Details

These are not to be called by the user.

Author(s)

Dongjun Chung, Hyonho Chun, and Sunduz Keles.

References

Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.

Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.


spls

Sparse Partial Least Squares (SPLS) Regression and Classification

v2.2-3
GPL (>= 2)
Authors
Dongjun Chung <chungdon@stat.wisc.edu>, Hyonho Chun <chun@stat.wisc.edu>, Sunduz Keles <keles@stat.wisc.edu>
Initial release
2019-05-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.