Internal SPLS functions
Internal SPLS functions.
heatmap.spls( mat, coln=16, as='n', ... ) spls.dv( Z, eta, kappa, eps, maxstep ) ust( b, eta ) correctp( x, y, eta, K, kappa, select, fit ) cv.split( y, fold ) wpls( x, y, V, K=ncol(x), type="pls1", center.x=TRUE, scale.x=FALSE ) sgpls.binary( x, y, K, eta, scale.x=TRUE, eps=1e-5, denom.eps=1e-20, zero.eps=1e-5, maxstep=100, br=TRUE, ftype='iden' ) sgpls.multi( x, y, K, eta, scale.x=TRUE, eps=1e-5, denom.eps=1e-20, zero.eps=1e-5, maxstep=100, br=TRUE, ftype='iden' ) cv.sgpls.binary( x, y, fold=10, K, eta, scale.x=TRUE, plot.it=TRUE, br=TRUE, ftype='iden', n.core=8 ) cv.sgpls.multi( x, y, fold=10, K, eta, scale.x=TRUE, plot.it=TRUE, br=TRUE, ftype='iden', n.core=8 )
These are not to be called by the user.
Dongjun Chung, Hyonho Chun, and Sunduz Keles.
Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.