Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

superpc.plot.lrtest

Plot likelhiood ratio test statistics


Description

Plot likelhiood ratio test statistics from output of superpc.predict

Usage

superpc.plot.lrtest(object.lrtestcurv, 
                        call.win.metafile=FALSE)

Arguments

object.lrtestcurv

Output from superpc.lrtest.curv

call.win.metafile

For use by PAM Excel interface

Author(s)

  • "Eric Bair, Ph.D."

  • "Jean-Eudes Dazard, Ph.D."

  • "Rob Tibshirani, Ph.D."

Maintainer: "Jean-Eudes Dazard, Ph.D."

References

  • E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.

  • E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.

Examples

set.seed(332)

#generate some data
x <- matrix(rnorm(50*30), ncol=30)
y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30)
censoring.status <- sample(c(rep(1,20), rep(0,10)))
censoring.status.test <- sample(c(rep(1,20), rep(0,10)))

featurenames <- paste("feature", as.character(1:50), sep="")
data <- list(x=x, 
             y=y, 
             censoring.status=censoring.status, 
             featurenames=featurenames)
data.test <- list(x=x, 
                  y=ytest, 
                  censoring.status=censoring.status.test, 
                  featurenames=featurenames)

a <- superpc.train(data, type="survival")
bb <- superpc.lrtest.curv(a, 
                          data, 
                          data.test)
superpc.plot.lrtest(bb)

superpc

Supervised Principal Components

v1.12
GPL (>= 3) | file LICENSE
Authors
Eric Bair [aut], Jean-Eudes Dazard [cre, ctb], Rob Tibshirani [ctb]
Initial release
2020-10-19

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.