Plot output from superpc.cv
Plots pre-validation results from plotcv, to aid in choosing best threshold
superpc.plotcv(object, cv.type=c("full","preval"), smooth=TRUE, smooth.df=10, call.win.metafile=FALSE, ...)
object |
Object returned by superpc.cv. |
cv.type |
Type of cross-validation used - "full" (Default; this is "standard" cross-validation; recommended) and "preval"- pre-validation. |
smooth |
Should plot be smoothed? Only relevant to "preval". Default FALSE. |
smooth.df |
Degrees of freedom for smooth.spline, default 10. If NULL, then degrees of freedom is estimated by cross-validation. |
call.win.metafile |
Ignore: for use by PAM Excel program. |
... |
Additional plotting args to be passed to matplot. |
"Eric Bair, Ph.D."
"Jean-Eudes Dazard, Ph.D."
"Rob Tibshirani, Ph.D."
Maintainer: "Jean-Eudes Dazard, Ph.D."
E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.
## Not run: set.seed(332) #generate some data x <- matrix(rnorm(50*30), ncol=30) y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) censoring.status <- sample(c(rep(1,20), rep(0,10))) featurenames <- paste("feature", as.character(1:50), sep="") data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) a <- superpc.train(data, type="survival") aa <- superpc.cv(a,data) superpc.plotcv(aa) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.