Plot likelihood ratio test statistics from supervised principal components predictor
Plot likelihood ratio test statistics from supervised principal components predictor
superpc.plotred.lrtest(object.lrtestred, call.win.metafile=FALSE)
object.lrtestred |
Output from either superpc.predict.red or superpc.predict.redcv |
call.win.metafile |
Used only by PAM Excel interface call to function |
"Eric Bair, Ph.D."
"Jean-Eudes Dazard, Ph.D."
"Rob Tibshirani, Ph.D."
Maintainer: "Jean-Eudes Dazard, Ph.D."
E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.
## Not run: set.seed(332) #generate some data x <- matrix(rnorm(50*30), ncol=30) y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) censoring.status <- sample(c(rep(1,20), rep(0,10))) censoring.status.test <- sample(c(rep(1,20), rep(0,10))) featurenames <- paste("feature", as.character(1:50), sep="") data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) data.test <- list(x=x, y=ytest, censoring.status=censoring.status.test, featurenames=featurenames) a <- superpc.train(data, type="survival") aa <- superpc.cv(a, data) fit.red <- superpc.predict.red(a, data, data.test, .6) fit.redcv <- superpc.predict.red.cv(fit.red, aa, data, .6) superpc.plotred.lrtest(fit.redcv) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.