Cross-validation of feature selection for supervised principal components
Applies superpc.predict.red to cross-validation folds generates in superpc.cv. Uses the output to evaluate reduced models, and compare them to the full supervised principal components predictor.
superpc.predict.red.cv(fitred, fitcv, data, threshold, sign.wt="both")
fitred |
Output of superpc.predict.red |
fitcv |
Output of superpc.cv |
data |
Training data object |
threshold |
Feature score threshold; usually estimated from superpc.cv |
sign.wt |
Signs of feature weights allowed: "both", "pos", or "neg" |
lrtest.reduced |
Likelihood ratio tests for reduced models |
components |
Number of supervised principal components used |
v.preval.red |
Outcome predictor from reduced models. Array of num.reduced.models by (number of test observations) |
type |
Type of outcome |
call |
calling sequence |
"Eric Bair, Ph.D."
"Jean-Eudes Dazard, Ph.D."
"Rob Tibshirani, Ph.D."
Maintainer: "Jean-Eudes Dazard, Ph.D."
E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.
## Not run: set.seed(332) #generate some data x <- matrix(rnorm(50*20), ncol=20) y <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20) ytest <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20) censoring.status <- sample(c(rep(1,15), rep(0,5))) censoring.status.test <- sample(c(rep(1,15), rep(0,5))) featurenames <- paste("feature", as.character(1:50), sep="") data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) data.test <- list(x=x, y=ytest, censoring.status=censoring.status.test, featurenames=featurenames) a <- superpc.train(data, type="survival") aa <- superpc.cv(a, data) fit.red <- superpc.predict.red(a, data, data.test, threshold=.6) fit.redcv <- superpc.predict.red.cv(fit.red, aa, data, threshold=.6) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.