Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

svycdf

Cumulative Distribution Function


Description

Estimates the population cumulative distribution function for specified variables. In contrast to svyquantile, this does not do any interpolation: the result is a right-continuous step function.

Usage

svycdf(formula, design, na.rm = TRUE,...)
## S3 method for class 'svycdf'
print(x,...)
## S3 method for class 'svycdf'
plot(x,xlab=NULL,...)

Arguments

formula

one-sided formula giving variables from the design object

design

survey design object

na.rm

remove missing data (case-wise deletion)?

...

other arguments to plot.stepfun

x

object of class svycdf

xlab

a vector of x-axis labels or NULL for the default labels

Value

An object of class svycdf, which is a list of step functions (of class stepfun)

See Also

Examples

data(api)
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, 
    fpc = ~fpc)
cdf.est<-svycdf(~enroll+api00+api99, dstrat)
cdf.est
## function
cdf.est[[1]]
## evaluate the function
cdf.est[[1]](800)
cdf.est[[2]](800)

## compare to population and sample CDFs.
opar<-par(mfrow=c(2,1))
cdf.pop<-ecdf(apipop$enroll)
cdf.samp<-ecdf(apistrat$enroll)
plot(cdf.pop,main="Population vs sample", xlab="Enrollment")
lines(cdf.samp,col.points="red")

plot(cdf.pop, main="Population vs estimate", xlab="Enrollment")
lines(cdf.est[[1]],col.points="red")

par(opar)

survey

Analysis of Complex Survey Samples

v4.0
GPL-2 | GPL-3
Authors
Thomas Lumley
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.