Design-based rank tests
Design-based versions of k-sample rank tests. The built-in tests are all for location hypotheses, but the user could specify others.
svyranktest(formula, design, test = c("wilcoxon", "vanderWaerden", "median","KruskalWallis"), ...)
formula |
Model formula |
design |
A survey design object |
test |
Which rank test to use: Wilcoxon, van der Waerden's normal-scores
test, Mood's test for the median, or a function |
... |
for future expansion |
These tests are for the null hypothesis that the population or superpopulation distributions of the response variable are different between groups, targeted at population or superpopulation alternatives. The 'ranks' are defined as quantiles of the pooled distribution of the variable, so they do not just go from 1 to N; the null hypothesis does not depend on the weights, but the ranks do.
The tests reduce to the usual Normal approximations to the usual rank tests under iid sampling. Unlike the traditional rank tests, they are not exact in small samples.
Object of class htest
Lumley, T., & Scott, A. J. (2013). Two-sample rank tests under complex sampling. BIOMETRIKA, 100 (4), 831-842.
data(api) dclus1<-svydesign(id=~dnum, weights=~pw, fpc=~fpc, data=apiclus1) svyranktest(ell~comp.imp, dclus1) svyranktest(ell~comp.imp, dclus1, test="median") svyranktest(ell~stype, dclus1) svyranktest(ell~stype, dclus1, test="median") ## upper quartile svyranktest(ell~comp.imp, dclus1, test=function(r,N) as.numeric(r>0.75*N)) quantiletest<-function(p){ rval<-function(r,N) as.numeric(r>(N*p)) attr(rval,"name")<-paste(p,"quantile") rval } svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.5)) svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.75))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.