Boosted Trees Estimator
Construct a boosted trees estimator.
boosted_trees_regressor(feature_columns, n_batches_per_layer, model_dir = NULL, label_dimension = 1L, weight_column = NULL, n_trees = 100L, max_depth = 6L, learning_rate = 0.1, l1_regularization = 0, l2_regularization = 0, tree_complexity = 0, min_node_weight = 0, config = NULL) boosted_trees_classifier(feature_columns, n_batches_per_layer, model_dir = NULL, n_classes = 2L, weight_column = NULL, label_vocabulary = NULL, n_trees = 100L, max_depth = 6L, learning_rate = 0.1, l1_regularization = 0, l2_regularization = 0, tree_complexity = 0, min_node_weight = 0, config = NULL)
feature_columns |
An R list containing all of the feature columns used
by the model (typically, generated by |
n_batches_per_layer |
The number of batches to collect statistics per layer. |
model_dir |
Directory to save the model parameters, graph, and so on. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. |
label_dimension |
Number of regression targets per example. This is the
size of the last dimension of the labels and logits |
weight_column |
A string, or a numeric column created by
|
n_trees |
Number trees to be created. |
max_depth |
Maximum depth of the tree to grow. |
learning_rate |
Shrinkage parameter to be used when a tree added to the model. |
l1_regularization |
Regularization multiplier applied to the absolute weights of the tree leafs. |
l2_regularization |
Regularization multiplier applied to the square weights of the tree leafs. |
tree_complexity |
Regularization factor to penalize trees with more leaves. |
min_node_weight |
Minimum hessian a node must have for a split to be considered. The value will be compared with sum(leaf_hessian)/(batch_size * n_batches_per_layer). |
config |
A run configuration created by |
n_classes |
The number of label classes. |
label_vocabulary |
A list of strings represents possible label values.
If given, labels must be string type and have any value in
|
Other canned estimators: dnn_estimators
,
dnn_linear_combined_estimators
,
linear_estimators
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.