Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

graph_keys

Standard Names to Use for Graph Collections


Description

The standard library uses various well-known names to collect and retrieve values associated with a graph.

Usage

graph_keys()

Details

For example, the tf$Optimizer subclasses default to optimizing the variables collected undergraph_keys()$TRAINABLE_VARIABLES if NULL is specified, but it is also possible to pass an explicit list of variables.

The following standard keys are defined:

  • GLOBAL_VARIABLES: the default collection of Variable objects, shared across distributed environment (model variables are subset of these). See tf$global_variables for more details. Commonly, all TRAINABLE_VARIABLES variables will be in MODEL_VARIABLES, and all MODEL_VARIABLES variables will be in GLOBAL_VARIABLES.

  • LOCAL_VARIABLES: the subset of Variable objects that are local to each machine. Usually used for temporarily variables, like counters. Note: use tf$contrib$framework$local_variable to add to this collection.

  • MODEL_VARIABLES: the subset of Variable objects that are used in the model for inference (feed forward). Note: use tf$contrib$framework$model_variable to add to this collection.

  • TRAINABLE_VARIABLES: the subset of Variable objects that will be trained by an optimizer. See tf$trainable_variables for more details.

  • SUMMARIES: the summary Tensor objects that have been created in the graph. See tf$summary$merge_all for more details.

  • QUEUE_RUNNERS: the QueueRunner objects that are used to produce input for a computation. See tf$train$start_queue_runners for more details.

  • MOVING_AVERAGE_VARIABLES: the subset of Variable objects that will also keep moving averages. See tf$moving_average_variables for more details.

  • REGULARIZATION_LOSSES: regularization losses collected during graph construction. The following standard keys are defined, but their collections are not automatically populated as many of the others are:

    • WEIGHTS

    • BIASES

    • ACTIVATIONS

See Also

Other utility functions: latest_checkpoint

Examples

## Not run: 
graph_keys()
graph_keys()$LOSSES

## End(Not run)

tfestimators

Interface to 'TensorFlow' Estimators

v1.9.1
Apache License 2.0
Authors
JJ Allaire [aut], Yuan Tang [aut] (<https://orcid.org/0000-0001-5243-233X>), Kevin Ushey [aut], Kevin Kuo [aut, cre] (<https://orcid.org/0000-0001-7803-7901>), Daniel Falbel [ctb, cph], RStudio [cph, fnd], Google Inc. [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.