Generate Predictions with an Estimator
Generate predicted labels / values for input data provided by input_fn()
.
## S3 method for class 'tf_estimator' predict(object, input_fn, checkpoint_path = NULL, predict_keys = c("predictions", "classes", "class_ids", "logistic", "logits", "probabilities"), hooks = NULL, as_iterable = FALSE, simplify = TRUE, yield_single_examples = TRUE, ...)
object |
A TensorFlow estimator. |
input_fn |
An input function, typically generated by the |
checkpoint_path |
The path to a specific model checkpoint to be used for
prediction. If |
predict_keys |
The types of predictions that should be produced, as an R list. When this argument is not specified (the default), all possible predicted values will be returned. |
hooks |
A list of R functions, to be used as callbacks inside the
training loop. By default, |
as_iterable |
Boolean; should a raw Python generator be returned? When
|
simplify |
Whether to simplify prediction results into a |
yield_single_examples |
(Available since TensorFlow v1.7) If |
... |
Optional arguments passed on to the estimator's |
Evaluated values of predictions
tensors.
ValueError: Could not find a trained model in model_dir.
ValueError: if batch length of predictions are not same. ValueError: If
there is a conflict between predict_keys
and predictions
. For example
if predict_keys
is not NULL
but EstimatorSpec.predictions
is not a
dict
.
Other custom estimator methods: estimator_spec
,
estimator
,
evaluate.tf_estimator
,
export_savedmodel.tf_estimator
,
train.tf_estimator
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.